MITSUBISHI PROGRAMMABLE CONTROLLER

Instruction Manual

PID Control Unit Type KD81

1. GENERAL DESCRIPTION $3 \sim 6$
1.1 General Description 4
1.2 PID Control. 5
2. SYSTEM CONFIGURATION $7 \sim 12$
2.1 Equipment 8
2.2 System Configuration 9
2.3 Internal Configuration of KD81 11
3. SPECIFICATIONS $13 \sim 28$
3.1 General Specifications 14
3.2 Performance Specifications 15
3.2.1 Performance specifications 15
3.2.2 List of instructions 19
3.2.3 List of instructions and possible devices 24
3.2.4 List of S and D of PID instructions 25
3.2.5 Program memory map 26
3.3 Specifications of Connector for External Connection of KD81 27
3.4 Type KD81 PID Programmer 28
3.5 Type K70CBL Connection Cable (Standard for KD81HP) 28
4. HANDLING 29 40
4.1 Controls and Explanations 30
4.1.1 KD81 panel 30
4.1.2 Interior of KD81 31
4.1.3 Adjustments of volumes 32
4.1.4 Adjusting procedures of volumes. 33
4.2 External Wiring 35
4.2.1 Analog input pin arrangement and external wiring method 35
4.2.2 Analog output pin arrangement and external wiring method 36
4.2.3 Counter input pin arrangement and external wiring mehtod 37
4.2.4 Digital output pin arrangement and external wiring method 38
4.2.5 Wiring Noise Considerations 39
5. PROGRAMMING $41 ~ 74$
5.3.6 Special instructions 55
5.3.7 PID instructions 61
5.4 Communication with Programmable Controller 65
5.4.1 I/O signal and allacation 65
5.4.2 Communication with programmable controller 66
5.4.3 Write from programmable controller of KD81 67
5.4.4 Read from KD81 77
6. ERROR MESSAGE LIST $75 \sim 76$
7. EXTERNAL DIMENSIONS OF KD81 $77 \sim 78$
8. CAUTIONS FOR APPLICATION $79 \sim 84$
8.1 Run during Instantaneous Stop 80
8.2 Run during Error 80
8.3 Run during KCPU "STOP". 80
8.4 Selection of Power Supply Unit 81
9. MAINTENANCE $85 \sim 86$
9.1 Handling Instructions 86
9.2 Storage 86
APPENDIX $87 \sim 90$
Process Time List 88

1. GENERAL DESCRIPTION

1. GENERAL DESCRIPTION. $3 \sim 6$
1.1 General Description. 4
1.2 PID Control. 5

1. GENERAL DESCRIPTION

1.1 General Description

The PID control unit KD81 (hereinafter referred to as "KD81") is a MELSEC-K series functional unit developed to enable high-speed and high-accuracy process control with a programmable controller. The KD81 incorporates a microprocessor and processes PID operations at high speed and in high accuracy. Equipped with a variety of instruction functions required for PID control, the KD81 also permits various types of process control.

[Features]

1) The most suitable PID control can be made.

By selection of positional, velocity or error square type PID operation, the KD81 can afford to execute PID control which is best-suited for controlled object.
2) Four loop can be controlled by one KD81 unit Using 4 channels of analog I/O circuits, the KD81 can simultaneously execute PID control with a maximum of 4 loops.
3) High-speed processing of PID operation can be made.

High-speed processing can be done at a sampling period of minimum 0.01 second.
4) Various types of alarm detection functions

The rate of PV (process variable) change check function and the rate of MV (manipulated variable) change check function are provided to allow the monitor of PV and MV.
5) A variety of instruction functions

Higher-grade control can be made with 33 types of instructions such as PID and special instructions required for PID control and also arithmetic operation and logical instructions.
6) Easy programming

By use of PID programmer KD81HP, direct programming can be accomplished.

For programming by use of KD81HP, see the "Instruction Manual for Type KD81HP PID Programmer".

1. GENERAL DESCRIPTION

1.2 PID Control

(1) General description of PID control

PID control is utilized for a process control system which controls flow rate, velocity, air flow, temperature, tension, etc. The basic block diagram is shown below.

SV:	SET VALUE
PV:	PROCESS VALUE
MV:	MAINPULATED VALUE
E:	ERROR

In process control, an automatically functioning mechanism is provided so that controlled variable, such as flow rate, is measured and compared with a pre-provided desirable variable, i.e. set variable, and if error exists between these variables, the controller regulates output depending on the degree of error to always equalize the controlled variable to the set variable. In PID control, the controller makes the operations of proportional variable (P), integration variable (I), and differentiation variable (D) on the basis of error (set variable minus process variable) and these variables are used as manipulated variables.

Fig. 1.1 PID Control Block Diagram
(2) P, I, and D actions
(P) Proportional control action

This action causes manipulated variable, which is proportional to the error (difference between set variable and process variable), to function. However, when offset (residual error) occurs due to the variations of load variable, etc., the error cannot be corrected only by the proportional control action.
(1) Integral control action

When error and offset occur, this action functions consecutively to eliminate them depending on their magnitude. (Proportional to the time integration of error)
(D) Derivative control action

When error begins to occur due to disturbance, etc., this action prevents large variations of controlled unit by providing large corrective action while the error is small. Therefore, this action does not function for a uniform error, such as offset, irrespective of its magnitude.
$P+1)----$ This action functions to correct control, which does not have offset, and error due to disturbance.
$P+1+D$-- This action functions as described in $P+D$ and also functions to immediately correct sudden changes.

2. SYSTEM CONFIGURATION

2. SYSTEM CONFIGURATION $7 \sim 12$
2.1 Equipment 8
2.2 System Configuration 9
2.3 Internal Configuration of KD81 11

2. SYSTEM CONFIGURATION

2. SYSTEM CONFIGURATION

2.1 Equipment

Type	Equipment	Qty
KD81	KD81 (with 48 pin connectors for external connection)	1
KD81HP	KD81HP, K70CBL, KG73 (KD81HP containing case)	1 each

Table 2.1 Equipment

1. PID control unit KD81

2. Connection cable K70CBL

3. PID programmer KD81 HP

4. PID programmer containing case KG73

2.2 System Configuration

System Combined with K2 or K3

System Combined with KGPC11

*KD81 can also be used for remote I/O channel.
System Combined with Computer

2.3 Internal Configuration of KD81

Fig. 2.2 Internal Configuration of KD81

MEMO

3. SPECIFICATIONS

3. SPECIFICATIONS . 13 ~ 28
3.1 General Specifications. 14
3.2 Performance Specifications . 15
3.2.1 Performance specifications . 15
3.2.2 List of instructions . 19
3.2.3 List of instructions and possible devices . 24
3.2.4 List of S and D of PID instructions . 25
3.2.5 Program memory map. 26
3.3 Specifications of Connector for External Connection of KD81. 27
3.4 Type KD81 PID Programmer . 28
3.5 Type K70CBL Connection Cable (Standard for KD81HP) . 28

3. SPECIFICATIONS

3.1 General Specifications

Item	Specifications
Operating ambient temperature	$0 \sim 55^{\circ} \mathrm{C}$
Storage ambient temperature	$-10 \sim 75^{\circ} \mathrm{C}$
Operating ambient humidity	$10 \sim 85 \% \mathrm{RH}$ (no dew condensation)
Storage ambient humidity	$10 \sim 90 \% \mathrm{RH}$ (no dew condensation)
Vibration resistance	Conforms to JIS C 0911 IIB class 3 (16.7 Hz, 3-mm double amplitude, 2 hrs.)
Shock resistance	Conforms to JIS C 0912 (10 g $\times 3$ times in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions)
Operating ambience	There should be no corrosive gas and particularly dust should be minimal.
Cooling system	Self-cooling

Table 3.1 General Specifications

3.2 Performance Specifications

3.2.1 Performance specifications

Item		Specifications
Exclusively used number of inputs/outputs		32 points
Instruction	Function instructions	33 types
	Word length	32 bits (4 bytes)/step $1 \sim 6$ step instruction
Instruction execution time		Refer to Appendix (Page 87)
Program	Capacity	A total of 2000 steps in program
	Number of loops	A maximum of 4 loops
Sampling period		$0.01 \sim 99.99$ seconds (Setting is possible in units of 10 ms .)
PID operation		8 types of operation expressions (positional, velocity type, and error square type can be selected)
PID constant setting range	Proportional constant (KP)	$0.00 \sim 100.00$
	Integration constant (T1)	$0.01 \sim 32700.00$ seconds
	Differentiation constant (To)	$0.00 \sim 255.00$ seconds
Set variable setting range (SV)		0.00~100.00\%
Process varible range (PV)		0.00 ~ 100.00\%
Dead band range (G)		0.00 ~ 100.00\%
Analog input	Number of circuits	4 channels (non-insulated)
	Specifications	$0 \sim 5 \mathrm{VDC}$ Input resistance $: 0.9 \mathrm{M} \Omega$ or larger $4 \sim 20 \mathrm{mADC}$ Input resistance : 250Ω
	Resolution	1/4096 (12 bit)
Analog output	Number of circuits	4 channels (non-insulated)
	Specifications	$0 \sim 5 \mathrm{VDC}$ External load resistance : $500 \Omega \sim 1 \mathrm{M} \Omega$ $4 \sim 24 \mathrm{mADC}$ External load resistance $: 0 \Omega \sim 600 \Omega$
	Resolution	1/4096 (12 bit)
Digital output	Number of circuits	4 channel (PY12 ~ PY15)
	Specifications	Transistor output (Open collector) Rated working voltage, current : 12/24VDC, 0.1A 4 points/common
Frequency counter	Number of circuits	2 channel (PCO, PC1)
	Specifications	 5VDC Input resistance : 330Ω (input current: 7 mA) 12VDC Input resistance $: 1.5 \mathrm{~K} \Omega$ ((nput current : 7 mA) 24VDC Input resistance $: 1.5 \mathrm{~K} \Omega$ (Input current : 13 mA)
	Counting frequency	20 kHz (MAX.) DUTY 50\%
	Counting range	$0 \sim 65535$ pulses/sampling period

Table 3.2 Performance Specifications

Item			Specifications	
Counter	Number of circuit		2 channel (PC2, PC3)	
	Counter mode		UP COUNTER, DOWN COUNTER, or UP/DOWN COUNTER, depending on initial setting.	
	Specifications		5VDC 12VDC 24VDC	Input resistance : 330Ω (Input current : 7 mA) Input resistance: $1.5 \mathrm{~K} \Omega$ (Input current : 7 mA) Input resistance : $1.5 \mathrm{~K} \Omega$ (Input cúrrent : 13 mA)
	Counting frequency			20 kHz (MAX.) DUTY 50\%
	Counting Range		-32678 ~ 32767	
Input	Number of points	8 points	PXO ~ PX7	Write is possible from programmable controller.
Output	Number of points	12 points	PYO ~ PY11	Read is possible from programmable controller.
Temporary memory	Number of points	16 points	PMO ~ PM15	Read and write are possible from programmable controller.
		112 points	PM16 ~ PM127	Read and write are not possible from programmable controller.
Data register	Number of points	30points	PD1 ~ PD31	Read and write are possible from programmable controller.
		96 points	PD32~PD127	Read and write are not possible from programmable controller.
Timer	Number of points	16 points	PTO ~ PT15	10ms timer - maximum counting time: 327 sec
		16 points	PT16 ~ PT31	100ms timer - maximum counting time: 3276 sec

Table 3.2 Performance Specifications (Continued)

Note) 1. The names of devices used for KD81 are provided with " P " to differentiate them from devices for programmable controller.

Description	Device Name of KD81	Device Name of Programmable Controller	Device Name Shown on KD81HP	
			Key	Display
Input	PX	x	PX	X
Output	PY	Y	PY	Y
Temporary memory	PM	M	PM	M
Timer	PT	T	PT	T
Counter	PC	C	PC	C
Data register	PD	D	PD	D
Constant	K	K	K	K

2. Frequency counters (PCO, PC1).....................
The number of pulses input during sampling period is stored in PCO and PC1.
3. For details of temporary memory and data register functions, see the following pages.

Temporary Memory Number	Function
PM $\quad 0 \sim 70$ PM $75 \sim 80$ PM $85 \sim 90$ PM $95 \sim 100$ PM105~110 PM113~127	Usable by user program as desired. (PMO ~ 31 can be read and written by the programmable controller.)
PM 71	Clear of program 1 PID operation
PM 72	Clear of program 2 PID operation
PM 73	Clear of program 3 PID operation
PM 74	Clear of program 4 PID operation
PM81	Alarm for PV (process value) change rate of analog input channel 1. " 1 " when the change rate is large.
PM82	Alarm for PV (process value) change rate of analog input channel 2. " 1 " when the change rate is large.
PM83	Alarm for PV (process value) change rate of analog input channel 3. "1" when the change rate is large.
PM84	Alarm for PV (process value) change rate of analog input channel 4. "1" when the change rate is large.
PM91	Automatic-manual selection of analog output channel 1. "1" when automatic is selected.
PM92	Automatic-manual selection of analog output channel 2. "1" when automatic is selected.
PM93	Automatic-manual selection of analog output channel 3. "1" when automatic is selected.
PM94	Automatic-manual selection of analog output channel 4. "1" when automatic is selected.
PM101	Alarm for MV (manipulated value) change rate of analog output channel 1. "1" when the change rate is large.
PM102	Alarm for MV (manipulated value) change rate of analog output channel 2. "1" when the change rate is large.
PM103	Alarm for MV (manipulated value) change rate of analog output channel 3. "1" when the change rate is large.
PM104	Alarm for MV (manipulated value) change rate of analog output channel 4. "1" when the change rate is large.
PM111	"1" when preset counter PC2 overflows. CTR FLAC
PM112	"1" when preset counter PC3 overflows. CTR FLAG

Note: 1. Since 18 points of PM71~74, PM81~84, PM91~94, PM101~104, and PM111, 112 are used for fixed application, do not use these temporary memories for other purposes. (Once set, the aforementioned temporary memories do not turn off.)
2. PM71~ 74 are temporary memories for clearing PID operation. Only when this PM turns from off to on, the preceding result of operation is cleared to " 0 " and PID operation is resumed from the initial state upon the execution of PID operation of program which corresponds to the turned-on PM.

Table 3.3 Temporary Memory Functions

Data Register Number	Function
PD $1 \sim 91$ PD $94 \sim 100$ PD105 ~ 110 PD115~120 PD125 ~ 127	Usable by user program as desired (PD1~31 can be read and written by the programmable controller.)
PD92	Area for storing set value of UP/DOWN counter PC2.
PD93	Area for storing set value of UP/DOWN counter PC3.
PD101	Area for storing PV (process value) of analog input channel 1.
PD102	Area for storing PV (process value) of analog input channel 2.
PD103	Area for storing PV (process value) of analog input channel 3.
PD104	Area for storing PV (process value) of analog input channel 4.
PD111	Area for storing automatic MV (manipulated value) of analog output channel 1.
PD112	Area for storing automatic MV (manipulated value) of analog output channel 2.
PD113	Area for storing automatic MV (manipulated value) of analog output channel 3.
PD114	Area for storing automatic MV (manipulated value) of analog output channel 4.
PD121	Area for storing manual MV (manipulated value) of analog output channel 1.
PD122	Area for storing manual MV (manipulated value) of analog output channel 2.
PD123	Area for storing manual MV (manipulated value) of analog output channel 3.
PD124	Area for storing manual MV (manipulated value) of analog output channel 4.

Note: \quad Since 14 points of PD92 ~ 93, PM101~104, PM111~114, and PM121~124 are used for fixed application, do not use these data registers for other purposes.

Table 3.4 Data Register Functions

3.2.2 List of instructions

V	Instruction	Logical Processing		Function	Content of Operation	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Number } \\ \text { of } \\ \text { steps } \end{array} \\ \hline \end{array}$	
	NOT	\bigcirc		Inverse	$(A) \leftarrow(\overline{\text { Device }})$	1	
	AND	\bigcirc		Logical product	$(\mathrm{A}) \leftarrow(\mathrm{A}) \wedge$ (Device)	1	
	OR	0		Logical add	$(\mathrm{A}) \leftarrow(\mathrm{A}) \vee$ (Device)	1	
	SET	\bigcirc		Set	(Device) $\leftarrow 1$	1	
	RST	\bigcirc		Reset	(Device) $\leftarrow 0$	1	
	STA	\bigcirc	\bigcirc	Storage (WR.	(E) (Device) $\leftarrow(A)$	1	
	LDA	\bigcirc	\bigcirc	Read	$(\mathrm{A}) \leftarrow$ (Device)	1	
	MOV	\bigcirc	\bigcirc	Transfer	$S \rightarrow$ D	1	
	+		\bigcirc	Add	$(A) \leftarrow(A)+($ Device $)$	1	
	-		\bigcirc	Subtract	$(A) \leftarrow(A)-$ (Device)	1	
	*		\bigcirc	Multiply	$(\mathrm{A}) \leftarrow(\mathrm{A}) \times$ (Device)	1	
	$/$		\bigcirc	Divide	$(A) \leftarrow(A) \div$ (Device)	1	
	$\sqrt{ }$		\bigcirc	Square root	(A) $\leftarrow \sqrt{(A)}$	1	
	PCT		\bigcirc	\% operation	$(\mathrm{A}) \leftarrow\{(\mathrm{A}) /($ Device $)\} \times 100$	1	
	LOG		\bigcirc	Common logarithm	$(A) \leftarrow \log 10(A)$	1	
	ABS		\bigcirc	Absolute value	$(A) \leftarrow \\|(A) \mid$	1	
	>		\bigcirc	Comparison	When $(A) \leqq$ (Device), "the next step +1 " is run. When $(A)>$ (Device), the next step is run.	1	
	$<$		\bigcirc	Comparison	When $(A)<$ (Device), the next step is run. When $(A) \geqq$ (Device), "the next step +1 " is run.	1	
	=		\bigcirc	Comparison	When $(A)=($ Device $)$, the next step is run. When $(A) \gtrless$ (Device), "the next step $+1^{\prime \prime}$ is run.	1	
	JMP	-	-	Unconditional jump	Program jumps to specified program step.	1	
	JC	\bigcirc		Conditional jump	- When condition [(A) =1] holds, program jumps to specified program step. - When condition [$(A)=1]$ does not hold, the next step is run.	1	
	HS (High select)		\bigcirc	Magnitude comparison	When $(A) \geqq$ (Device), $(A) \rightarrow(A)$ When $(A)<$ (Device), (Device) $\rightarrow(A)$	1	
	LS (Low select)		\bigcirc	Magnitude comparison	When $(A) \leqq$ (Device), $(A) \rightarrow(A)$ When $(A)>$ (Device), (Device) $\rightarrow(A)$	1	
	HLM (High limiter)		O	Clamping of higher limit value	When $(A)>$ (Device), (Device) $\rightarrow(A)$	1	
	$\begin{gathered} \text { LLM } \\ \text { (Low limiter) } \end{gathered}$		O	Clamping of lower limit value	When $(\mathrm{A})<$ (Device), (Device) $\rightarrow(\mathrm{A})$	1	
	NOP	-	-	No operation	No operation is executed and the next step is run.	1	
	END	-	-	Program end	Declares the end of program.	1	

Table 3.5 List of Instructions

人	Instruction	Symbol	Function	Contents of Operation	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Number } \\ \text { of } \\ \text { Step } \end{array} \\ \hline \end{array}$
	HAL (High alarm)	HAL AP HS 	Function which provides alarm output when (A) becomes higher than set variable.		3
	LAL (Low alarm)	LAL AP HS ALARM	Function which provides alarm output when (A) becomes lower than set variable.		3
	SAL (Set alarm)	SAL AP HS ALARM	Function which provides alarm output when (A) is within set variable plus ON range.		3

Table 3.5 List of Instructions (Continued)

Table 3.5 List of Instructions (Continued)

Table 3.5 List of Instructions (Continued)

Table 3.5 List of Instructions (Continued)

3.2.3 List of instructions and used devices

\qquad	A	K	X	Y	M	T	C	D
NOP								
NOT			\bigcirc	\bigcirc	\bigcirc			
AND			\bigcirc	\bigcirc	\bigcirc			
OR			\bigcirc	\bigcirc	\bigcirc			
SET			\bigcirc	\bigcirc	\bigcirc	O C	OC	
RST			\bigcirc	\bigcirc	0	O C	OC	
END								
LDA		\bullet	\bigcirc	\bigcirc	0	- G	- G	-
STA			\bigcirc	0	\bigcirc	- G	-G	-
$+$		\bullet				- G	-G	-
-		-				- G	- G	-
*		-				- G	- G	-
/		\bullet				\bullet G	- G	\bullet
$\sqrt{ }$	\bullet							
\div		\bullet				\bullet G	- G	\bullet
LOG	\bullet							
ABS	\bullet							
$>$		-				- G	- G	\bullet
$<$		\bullet				- G	- G	\bullet
$=$		\bullet				- G	- G	\bullet
JC		\bigcirc						
JMP		\bigcirc						
HS		\bigcirc				O G	O G	\bigcirc
LS		\bigcirc				O G	O G	\bigcirc
HLM		\bigcirc						\bigcirc
LLM		\bigcirc						O

Table 3.6 List of Instructions and Used Devices
Note 1: O mark and mark in the table indicate usable devices; O marks for logical processing and mark for data processing.
2. C next to the aforementiones marks indicate coil and G indicate temporary value.

Instruction Device		D							
			K	X	Y	M	T	c	D
MOV	S	K	-	-	-	-	\bullet	\bullet	-
		PX	-	\bigcirc	\bigcirc	\bigcirc	-	-	-
		PY	-	\bigcirc	\bigcirc	\bigcirc	-	-	-
		PM	-	\bigcirc	\bigcirc	\bigcirc	-	-	-
		PT	-	-	-	-	- G	- G	\bullet
		PC	-	-	-	-	- G	- G	\bullet
		PD	-	-	-	-	\bullet	\bullet	\bullet

Table 3.6 List of Instructions and Used Devices (Continued)
Note: O mark indicates logical processing and mark indicates data processing

3.2.4 List of S and D of PID instructions

Instruction	Setting	Device						
		K	PX	PY	PM	PT	PC	PD
SAL	Alarm set variable	\bigcirc						\bullet
	Alarm output range	-						-
	M where alarm is set				-			
HAL	Alarm set variable	-						-
	Hysteresis variable	-						-
	M where alarm is set				\bullet			
LAL	Alarm set variable	-						-
	Hysteresis variable	-						\bullet
	M where alarm is set				\bullet			
PIX	Input device setting ($\mathrm{K} 1 \sim \mathrm{~K} 4$)	-						
	Filter coefficient $\alpha(0.00 \sim 1.00)$	-						-
	Rate of PV change limit value $\triangle \mathrm{PVL}(\%)$ ($0.00 \sim 100.00$)	-						-
	Input mode setting (K0 (voltage) or K1 (current))	-						
PIY	Output device setting ($\mathrm{K} 1 \sim \mathrm{~K} 4$)	\bigcirc						
	MV lower limit value MVL \% (0.00~100.00)	\bigcirc						-
	MV higher limit value MVHL \% (0.00~100.00)	-						\bullet
	Rate of MV change limit value $\Delta M V L$ \% ($0.00 \sim 100.00$)	-						-
PID	Operation expression ($\mathrm{K} 1 \sim \mathrm{~K} 8$)	-						
	Set variable SV(\%) (0.00~100.00)	-						\bullet
	Proportional constant Kp (0.00 ~ 100.00)	-						\bullet
	Integration constant T_{1} (second) $(0.000 \sim 32700.00)$	-						-
	Differentiation constant To (second) ($0.00 \sim 255.00$)	-						-
	Dead band G (\%) (0.00~100.00)	-						\bigcirc

Table 3.7 List of S and D of PID Instruction

3.2.5 Program memory map

The relation between the number of programs and the program capacity is as shown in the figure below. The maximum usable number of programs is 4 and the run (scan time) of each program can be set in the range of 0.01 and 99.99 seconds in units of 0.01 sec.

The allocation of program number is automatically made when the program trigger factor is set. (For the setting of program trigger factor, see Section 6 of the Instruction Manual for KD81HP.)

3.3 Specifications of Connector for External Connection of KD81

Table 3.8 Specifications of Connector for External Connection of KD81

3.4 Type KD81HP PID Programmer

Item	Specifications
Line voltage	5VDC (powered by KD81 via K70CBL)
Transmission system	Conforms to RS422.
Transmission speed	4.8 KBPS
Current consumption	Maximum 0.7 A
Display	Full-dot matrix system by means of liquid crystal Display of 16 char- acters horizontally and 13 characters vertically
Effective display area	77×96 (dot dimensions: 0.55×0.55, dot distance: 0.05)
Operating section	Keyboard switches (60 keys)
Key operation check	Buzzer
Dimensions	(9.84") 250 (height) $\times\left(6.3^{\prime \prime}\right) 160$ (width) $\times\left(1.7^{\prime \prime}\right) 43$ (depth) mm
Weight	$1.1 \mathrm{~kg}(2.4 \mathrm{lbs})$.

Table 3.9 KD81HP Specifications

3.5 Type K70CBL Connection Cable (Standard for KD81HP)

Item	Specifications
Connected units	KD81 and KD81 HP
Length	$2 \mathrm{~m}(7 \mathrm{ft})$
Weight	$0.27 \mathrm{~kg}(6 \mathrm{lbs})$

Table 3.10 K70CBL Specifications

4. HANDLING

4. HANDLING
$29 \sim 40$
4.1 Controls and Explanations . 30
4.1.1 KD81 panel. 30
4.1.2 Interior of KD81. 31
4.1.3 Adjustments of volumes . 32
4.1.4 Adjusting procedures of volumes. 33
4.2 External Wiring . 35
4.2.1 Analog input pin arrangement and external wiring method. 35
4.2.2 Analog output pin arrangement and external wiring method. 36
4.2.3 Counter input pin arrangement and external wiring mehtod 37
4.2.4 Digital output pin arrangement and external wiring method 38
4.2.5 Wiring Noise Considerations. 39

4. HANDLING

4. HANDLING

4.1 Controls and Explanations

4.1.1 KD81 panel

CAUTION

Since volumes are factory-set, do not adjust them unless required. Especially, the potentiometers with * marks should never be moved.

4. HANDLING

4.1.2 Interior of KD81

CAUTION

Since volumes are factory-set, do not adjust them unless required. Especially, the potentiometers with * marks should never be moved.

4.1.3 Adjustments of volumes

Analog voltage input

Adjustment volume

Channel	Gain adjustment
CH 1	VR1 (AD1 GAIN)
CH 2	VR2 (AD2 GAIN)
CH 3	VR3 (AD3 GAIN)
CH 4	VR4 (AD4 GAIN)

Channel	Zero adjustment
CH 1	VR5
CH 2	VR7
CH 3	VR9
CH 4	VR11

Analog current input
Input voltage (V)

Input value (\%)	Gain adjustment	Adjustment volume		Channel	Zero adjustment
		Channel	Gain adjustment		
		CH 1	VR1 (AD2 GAIN	CH1	VR5
		CH 2	$\begin{gathered} \text { VR2 } \\ \text { (AD2 GAIN) } \end{gathered}$	CH2	VR7
		CH3	$\begin{gathered} \text { VR3 } \\ \text { (AD3 GAIN) } \end{gathered}$	CH3	VR9
		CH4	$\begin{gathered} \text { VR4 } \\ \text { (AD4 GAIN) } \end{gathered}$	CH4	VR11

Analog voltage output Input current (mA)

Adjustment volume

Channel	Gain adjustment
CH1	VR13 (DA1 GAIN V)
CH 2	VR15 (DA2 GAIN V)
CH 3	VR21 (DA3 GAIN V)
CH 4	VR23 (DA4 GAIN V)

Channel	Zero adjustment
CH 1	VR18
CH 2	VR20
CH 3	VR28
CH 4	VR26

Output value (\%)

Adjustment volume

Channel	Gain adjustment
CH1	VR14 (DA1 GAIN I)
CH2	VR16 (DA2 GAIN I)
CH3	VR22 (DA3 GAIN I)
CH4	VR24 (DA4 GAIN I)

Channel	Zero adjustment
CH 1	VR17
CH 2	VR19
CH 3	VR27
CH 4	VR25

4.1.4 Adjusting procedures of volumes

All potentiometers have been factory-set. However, when adjustment is required, follow the procedures described below:
(1) Analog input

Voltage input

1) Load Type KD81 control unit into the rightmost slot of basic base unit and unload I/O units from other slots. (This is to provide space for adjusting the pots, which are located on the internal circuit board, with an adjusting screwdriver.)
2) Write the following program list to KD81 by KD81HP.

3) Run KD81 and monitor the content of (P)D001 by KD81HP.
4) Apply analog input 0 V to channel 1 of KD81.
5) Adjust the zero adjust pot VR5 until the content of (P) D001 reads " 0 ".
6) Apply analog input 5 V .
7) Adjust the gain adjust pot VR1 until the content of (P) D001 reads " 100 ".
(When the gain adjust pot is moved, ripple occurs at the input operating amplifier output.
Therefore, adjust the ripple adjust pot until ripple reads 0 (mV or mA).
Monitor the content of D001 and adjust until the variation of reading is minimized.
8) Likewise, make adjustments for channels 2 to 4.

Current input

1) After proceeding with the aforementioned steps 1) ~ 3), apply analog input 4 mA to channel 1 of KD81.
2) Make adjustment following the aforementioned step 5 .
3) Apply analog input 20 mA .
4) Make adjustment following the aforementioned steps 7 and 8.
(2) Analog output

Voltage output

1) Load Type KD81 control unit into the rightmost slot of basic base unit and unload I/O units from other slots.
This is to provide space for adjusting the potentiometers, which are located on the
internal circuit board, with an adjusting screwdriver.
2) Write the following program list to KD81 by KD81HP.

3) Connect a voltmeter to the analog output channel 1 of KD81.
4) Insert short-circuit chips into two locations " V " of channel 1 voltage/current output select pin.
5) Run KD81.
6) Adjust the zero adjust pot VR18 until voltage output of 0 V is provided when LDA K 0 is written to step 1.
7) Adjust the gain adjust pot VR13 until voltage output of 5 V is provided when LDA K 100 is written to step 1.
8) Likewise, make adjustments for other channels.

Current output

1) After proceeding with the aforementioned steps 1 and 2 , connect an ammeter instead of the voltmeter used in the aforementioned step 3.
2) Insert short-circuit chips into two locations of "I" of channel 1 voltage/current output select pin.
3) Run KD81.
4) Adjust the bias adjust pot VR17 until current output of 4 mA is provided when LDA K 0 is written to step 1.
5) Adjust the gain adjust pot VR13 until current output of 20 mA is provided when LDA K 100 is written to step 1.
6) Likewise, make adjustments for other channels.

4.2 External Wiring

4.2.1 Analog input pin arrangement and external wiring method

4.2.2 Analog output pin arrangement and external wiring method

4.2.3 Counter input pin arrangement and external wiring method

4.2.4 Digital output pin arrangement and external wiring method

4.2.5 Wiring noise considerations

External wiring with I/O equipment should be executed so that the wiring is not adversely affected by noise. The following description explains general cautions.
(1) Cables for AC and DC I/O signal lines should be separated in order to protect them from AC side surge and induction.
(2) Do not wire I/O signal lines with the main circuit cables, high-power cables, and load cables from other than the programmable controller. Also do not wire them in proximity to the aforementioned cables.
(3) When conduits or ducts are used, securely ground them.

MEMO
\qquad

5. PROGRAMMING

5. PROGRAMMING $41 ~ 74$
5.1 Device Names 42
5.2 Data Range 43
5.3 Explanation of Instructions. 44
5.3.1 Logical instructions. 44
5.3.2 Transfer instructions 46
5.3.3 Arithmetic operation instructions 48
5.3.4 Comparison instructions 52
5.3.5 Brach instructions 54
5.3.6 Special instructions 55
5.3.7 PID instructions 61
5.4 Communication with Programmable Controller 65
5.4.1 I/O signal and allacation 65
5.4.2 Communication with programmable controller 66
5.4.3 Write from programmable controller of KD81 67
5.4.4 Read from KD81. 71

5. PROGRAMMING

5. PROGRAMMING

5.1 Device Names

The names of devices used for KD81 are provided with " P " to differentiate them from devices used for programmable controller. (However, devices displayed by the KD81HP are not provided with " P " because of the number of display columns.)
For programming and other descriptions, it is recommended to describe device names with " P " provided in order to differentiate the devices.

Description	Device Name of KD81	Device Name of Programmable Controller	Device Name Displayed on KD81HP	
	PX	X	Key	Display
Output	PY	Y	PY	X
Temporary memory	PM	M	PM	Y
Timer	PT	T	PT	M
Counter	PC	C	PC	T
Data register	PD	D	PD	C
Constant	K	K	K	D

Table 5.1 Device Representations

5.2 Data Range

0	Description	Device Number	Data Range Processed by KD81	Data Ran	ge of KD81HP and KCPU
1	Timer temporary value	PTO ~ 15	-32768 ~ +32767 (x 10ms)	-3276	$8 \sim+32767$ ($\times 10 \mathrm{~ms}$)
		PT16 ~ 31	-32768 ~ +32767 (x 100ms)	-3276	$8 \sim+32767$ (x 100ms)
2	Counter temporary value	PCO ~ 3	-32768~+32767		$32768 \sim+32767$
3	Data register	PD1 ~ 127	$\pm 2.7 \times 1 \sigma^{20} \sim \pm 9.2 \times 10^{18}$	KD81HP	$\begin{gathered} \text { Monitor range } \\ \pm 9.999 \times 10^{-9} \sim \pm 9.999 \times 10^{9} \end{gathered}$
				KCPU	Communication range $-32768 \sim+32767$

Table 5.2 Data Range
(1) Timer and counter

When the temporary value of timer or counter exceeds +32767 , counting is continued like -32768,-32767, -1, 0 .
(2) Data register

The data register comprises 32 bits of floating points. When the value of data register exceeds the range of $\pm 2.7 \times 10^{-20} \sim \pm 9.2 \times 10^{18}$ by arithmetic operation, the KD81 detects an operation error (overflow or underflow) and comes to stop. At this time, the RUN indicator light flickers.
When the data processing ranges of KD81HP and KCPU are exceeded, data processing is fixed at the following values.

KD81 HP	When value is less than $-9.999 \times 10^{ \pm 9}$	$-9.999 \times 10^{ \pm 9}$
	When value exceeds $9.999 \times 10^{ \pm 9}$	$9.999 \times 10^{ \pm 9}$
KCPU	When value is -32768	-32768
	When value exceeds 32767	32767

(3) Constant

The range of constant which can be input from the KD81HP is as follows.
-99990 ~ 999900 (Up to five digits below a decimal point is possible)

5.3 Explanation of Instructions

5.3.1 Logical instructions

(1) NOT Inverse

Functional expression: $(A) \leftarrow \overline{\text { (Device) }}$
The content of specified device is inverted and stored into accumulator (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processed
Logical Processing	PX, PY, PM

Coding

Step Number	Instruction	Device Number
123	NOT	PMO

(2) AND Logical product

Functional expression: $(A) \leftarrow(A) \wedge$ (Device)
The AND operation of specified device content and (A) content is executed and the result is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processed
Logical Processing	PX, PY, PM

Coding

Step Number	Instruction	Device Number
123	AND	PX1

Type of Processing	Device Which Can Be Processed
Logical Processing	PX, PY, PM

Coding (A) content is executed and the result is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Step Number	Instruction	Device Number
123	OR	PY2

(4) SET Set

Functional expression: (Device) $\leftarrow 1$
Specified device is turned on.

Type of Processing	Device Which Can Be Processed
Logical Processing	PX, PY, PM, PC, PY

PC and PT are coils.

CAUTION

SET instructions for PCO and PC1 are inactive.

Coding		
Step Number	Instruction	Device Number
123	SET	PM10

(5) RST Reset

Functional expression: (Device) $\leftarrow 0$
Specified device is turned off.

Type of Processing	Device Which Can Be Processed
Logical Processing	PX, PY, PM, PC, PT

PC and PT are coils.

CAUTION
RST instructions for PCO and PC1 are inactive.

Coding		
Step Number	Instruction	Device Number
123	RST	PTO

5.3.2 Transfer instructions

(1) STA \qquad Storage

Functional expression: (Device) $\leftarrow(A)$
The content of (A) is stored into specified device.

CAUTION

1. Avoid mingling logical processing and data processing.

Example:

Type of Processing	Device Which Can Be Processed
Logical Processing	PX, PY, PM
Data Processing	PD, PC, PT

PC and PT are temporary values.
Coding

Step Number	Instruction	Device Number
123	STA	PD10

2. STA instructions for PCO and PC1 are inactive.
(2) LDA \qquad Read

Functional expression: $(A) \leftarrow($ Device $)$
The content of specified device is read to (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processed
Logical Processing	PX, PY, PM
Data Processing	PD, PC, PT, K

PC andPT are temoporary values.
Coding

Step Number	Instruction	Device Number
123	LDA	K10

(3) MOV --------- Transfer

Functional expression: S \rightarrow D
S: Source
S indicates the source from which data is transferred.

D: Destination
D indicates the destination where the conntent of S is stored.

This is a data transfer instruction between devices and transfers data from S to D. The content of S remains unchanged after the execution of the instruction.

CAUTION

MOV instructions for PCO and PC1 are inactive (when D = PCO, PC1).

Combination of devices which can be processed

		D						
		PX	PY	PM	PD	PC	PT	K
S	PX	\bigcirc	\bigcirc	O				
	PY	O	O	\bigcirc				
	PM	O	\bigcirc	\bigcirc				
	PD				-	-	\bullet	
	PC				\bullet	-	\bullet	
	PT				-	-	-	
	K				\bullet	\bullet	\bullet	

O mark indicates logical processing. - mark indicates data processing.

C and T indicate temporary value.

Coding

Step Number	Instruction	Device Number
123	MOV	K100
124		PD1

5.3.3 Arithmetic operation instructions

(1) + \qquad Add

Functional expression: $(A) \leftarrow(A)+$ (Device)
The content of specified device and that of (A) are added and the result is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values.

Coding

Step Number	Instruction	Device Number
123	+	PD1

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow

Note: For details of errors, see Section 6 "ERROR MESSAGE LIST".
(2) ---------------Subtract

Functional expression: $(A) \leftarrow(A)-$ (Device)
The content of specified device is subtracted from that of (A) and the result is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing	
Data Processing	PD, PC, PT, K	
PC and PT temporary values.		
Coding		
Step Number	Instruction	Device Number
123	-	K100

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow

Note: For details of errors, see Section 6 "ERROR MESSAGE LIST'.
(3) * \qquad
Functional expression: $(A) \leftarrow(A) \times$ (Device)
The content of (A) and that of specified device are multiplied and the result is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values.
Coding

Step Number	Instruction	Device Number
123	$*$	K20

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow

Note: For details of errors, see Section 6 "ERROR MESSAGE LIST".
(4) \qquad Divide

Functional expression: $(A) \leftarrow(A) \div$ (Device)
The content of (A) is divided by that of specified device and the result is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values. Coding		
Step Number Instruction Device Number		
123	$/$	PD10

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow
04	Division by 0

Note: For details of errors, see Section 6 "ERROR MESSAGE LIST".
(5) $\sqrt{ }$------- Square root

Functional expression: $(A) \leftarrow \sqrt{(A)}$
The extraction of $\sqrt{(A)}$ is executed and the result is stored into (A).

Type of Processing	Device Which Can Be Processing
Data Processing	A

Coding

Step Number	Instruction	Device Number
10	$\sqrt{ }$	

Arithmetic Operation Error

Error Code	Content
03	Square root of negative number

(6) PCT \qquad \% operation

Functional expression: $(A) \leftarrow\{(A) /($ Device $)\} \times 100$
The percentage of (A) to specified register is obtained and the result is stored into (A). The content of specified register remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values.

Coding		
Step Number	Instruction	Device Number
123	PCT	PD10

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow
04	Division by 0

Note: For details of errors, see Section 6 "ERROR MESSAGE LIST".

(7) LOG ----------Common logarithm

Functional expression: $(A) \leftarrow \log _{10}(A)$
The common logarithm of (A) is obtained and the result is stored into (A).

Type of Processing	Device Which Can Be Processing
Data Processing	A

Coding

Step Number	Instruction	Device Number
123	LOG	

Arithmetic Operation Error

Error	Content
03	Logarithmic calculation of 0 or negative number

Note: For details of errors, see Section 6 "ERROR MESSAGE LIST".
(8) ABS ---------- Absolute value

Functional expression: $(A) \leftarrow|(A)|$
The absolute value of (A) is obtained and the result is stored into (A).

Type of Processing	Device Which Can Be Processing
Data Processing	A

Step Number	Instruction	Device Number
123	ABS	

5.3.4 Comparison instructions

(1) > -------Comparison

Functional expression:
When $(A)>$ (Device), the next step is run. When $(A) \leqq$ (Device), "the next step +1 " is run.

The content of (A) and that of specified device are compared. When $(A)>$ (Device), the next program step is run. When $(A) \leqq$ (Device), "the next program step +1 step" is run. The content of specified device remains unchanged after the execution of the instruction.
(2) \qquad Comparison

Functional expression:
When $(A)<$ (Device), the next step is run. When $(A) \geq$ (Device), "the next step +1 " is run.

The content of (A) and that of specified device are compared. When $(A)<$ (Device), the next program step is run. When $(A) \geq$ (Device), "the next program step +1 step" is run. The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values.
Coding

Step Number	Instruction	Device Number
123	$>$	K100

Type of Processing	Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values.
Coding

Step Number	Instruction	Device Number
123	$<$	PD10

(3) $=$ \qquad Comparison

Function

Functional expression:
When $(A)=$ (Device), the next step is run.
When $(A) \neq$ (Device), "the next step +1 " is run.

The content of (A) and that of specified device are compared. When $(A)=$ (Device), the next program step is run. When $(A) \neq$ (Device), "the next program step +1 step" is run. The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values.
Coding

Step Number	Instruction	Device Number
123	$=$	PT1

5.3.5 Branch instructions

(1) JMP ----Unconditional jump

This is an unconditional jump instruction and causes the program to jump to the specified program step.

Coding

Step Number	Instruction	Device Number
123	JMP	K50

(2) JC ------ Conditional jump

Functional expression:
When $(A)=1$, program jumps to specified step.
When $(A)=0$, the next step is run.
This is a conditional jump instruction. When (A) $=1$, the program jumps to the specified program step. When $(A)=0$, the next program step is run.

Note: Avoid mingling logical processing and data processing.

Example:

Type of Processing	Device Which Can Be Processing
Data Processing	K

Coding

Step Number	Instruction	Device Number
123	JC	K120

> LDA K1 -----Logical processing

JC K15----Data processing

5.3.6 Special instructions

(1) HS ------Magnitude comparison

Functional expression:
When $(A) \geqq$ (Device), $(A) \rightarrow(A)$.
When $(A)<$ (Device), (Device) $\rightarrow(A)$
The content of specified device and that of (A) are compared, and the content with higher value is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values.

Coding

Step Number	Instruction	Device Number
123	HS	PD1

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow

Note: For details of errors, see Section 6 "ERROR MESSAGE LIST".
(2) LS ------ Magnitude comparison

Functional expression:
When $(A) \leqq$ (Device), $(A) \rightarrow(A)$.
When $(A)>$ (Device), (Device) $\rightarrow(A)$
The content of specified device and that of (A) are compared, and the content with lower value is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values.

Coding

Step Number	Instruction	Device Number
123	LS	K100

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow

[^0](3) HLM -- Clamping of higher limit value

Functional expression:

When $(A)>$ (Device), (Device) $\rightarrow(A)$.
The content of specified device and that of (A) are compared. When the content of (A) is higher than that of device, the content of device is stored into (A) and gives restriction to (A). The content of specified device remains unchanged after the execution of the instruction.
(A)

Coding

Step Number	Instruction	Device Number
123	HLM	PD100

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow

Note: For details of errors, see Section 6 "ERROR MESSAGE LIST".
(4) LLM ---Clamping of lower limit value

Functional expression:
When $(A)<$ (Device), (Device) $\rightarrow(A)$.
The content of specified device and that of (A) are compared. When the content of (A) is lower than that of device, the content of device is stored into (A) and gives restriction to (A). The content of specified device remains unchanged after the execution of the instruction.

Coding

Step Number	Instruction	Device Number
123	LLM	K10

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow

Note: For details of errors, see Section 6 " $E R R O R$ MESSAGE LIST".
(5) NOP -- No operation

This is a no-operation instruction and has no influence on the results of preceding arithmetic operation. NOP is used when providing space for debugging of program, when it is desired to make deletion without changing the number of programs (write NOP to the corresponding step of prewritten program), or when temporarily deleting a condition.
(6) END ---End of program

This is a program end instruction and is used to declare the end of program.

(7) HAL (High alarm)

When the content of (A) becomes higher than the alarm set variable (AP), alarm (specified PM) is turned on. The output alarm turns off at the hysteresis variable (HS).

Symbol

AP: Alarm set value
HS: Hysteresis value

Coding

Step Number	Instruction	Device Number
123	HAL	K100
124		K20
125		PM10

\leftarrow Alarm set value (AP)
\leftarrow Hysteresis value (HS)
\leftarrow Alarm output (ALARM)

Details of Parameter Settings

Parameter	Setting	Device Which Can Be Processed
Alarm set variable (AP)	Alarm ON point is set.	PD, K
Hysteresis variable (HS)	Hysteresis variable is set.	PD, K
Alarm output (ALARM)	PM number, which provides alarm output, is set.	PM

(8) LAL (Low alarm)

When the content of (A) becomes lower than the alarm set variable (AP), alarm (specified PM) is turned on. The output alarm turns off at the hysteresis variable (HS).

Coding

Step Number	Instruction	Device Number
123	LAL	PD10
124		PD11
125		PM51

Details of Parameter Settings

Parameter	Setting	Device Which Can Be Processed
Alarm set variable (AP)	Alarm ON point is set.	PD, K
Hysteresis variable (HS)	Hysteresis variable is set.	PD, K
Alarm output (ALARM)	PM number, which provides alarm output, is set.	PM

(9) SAL (Set alarm)

When the content of (A) is within the alarm set value (AP) plus output range (AO), alrm (specified PM) is turned on.

Symbol

AP : Alarm set value AO : Alarm output range

Coding

Step Number	Instruction	Device Number
123	SAL	PD15
124		K50
125		PM30

\leftarrow Alarm set value (AP)
\leftarrow Alarm output range (AO)
\leftarrow Alarm output (ALARM)

Details of Parameter Settings

Parameter	Setting	Device Which Can Be Processed
Alarm set variable (AP)	Alarm ON point is set.	PD, K
Alarm output range (AO)	Alarm output range is set.	PD, K
Alarm output (ALARM)	PM number, which provides alarm output, is set.	PM

5.3.7 PID instructions

(1) PIX

Analog input signal of process is converted into digital value and stored into specified data register.

Symbol
Coding

Step Number	Instruction	Device Number
123	PIX	K1
124		PD2
125		PD3
126		K0

\leftarrow Filter coefficient (α)
\leftarrow Rate of PV change limit value ($\Delta P V L$)
\leftarrow Input mode setting (I/V)

Details of Parameter Settings

Parameter	Setting	Setting Range	Device Which Can Be Processed
A/D converter channel setting (CH)	Set which of 4 channels of A / D converter is input.	1, 2, 3, 4	K
Filter coefficient (α)	The degree of filtering is set. As coefficient approaches zero, filter becomes inactive.	$0 \sim 1$	PD, K
Rate of PV change limit value ($\Delta \mathrm{PVL}$)	When the rate of change from previous PV to present PV exceeds this set variable, specified PM is set. (Once set, the PM does not turn off until reset.)	$0 \sim 100$ (\%)	PD, K
Input mode setting (I/V)	Current mode or voltage mode is set. When current mode is set, $4 \sim 20 \mathrm{~mA}$ is converted into $0 \sim 100 \%$. When voltage mode is set, $0 \sim 5 \mathrm{~V}$ is converted into $0 \sim 100 \%$. Converted analog value is stored into (A) and also into the next data register.	Current input: 1 Voltage input: 0	K

(2) PIY

The digital value of (A) or specified register is converted into analog value. When the AUTO position of MAN/AUTO select switch is selected, the content of (A) is output. When the MAN position is selected, the content of data register, which is determined by the channel, is output.

MAN/AUTO Position Selection
Symbol

Channel	MAN Position		AUTO Position	
	Select Signal	Output Value	Select Signal	Output Value
CH1	PM91 off	PD101	PM91 on	(A)
CH2	PM92 off	PD102	PM92 on	(A)
CH3	PM93 off	PD103	PM93 on	(A)
CH4	PM94 off	PD104	PM94 on	(A)

Coding

Step Number	Instruction	Device Number
25	PIY	K2
26		PD5
27		PD6
28		PD7

\leftarrow D/A converter channel setting (CH)
\leftarrow MV lower limit value (MVLL)
\leftarrow MV higher limit value (MVHL)
\leftarrow Rate of MV change limit value ($\Delta M V L$)
Details of Parameter Settings

Parameter	Setting	Setting Range	Device Which Can Be Processed
D/A converter channel setting (CH)	Specify to which of 4 channels of D/A converter the output is provided.	1, 2, 3, 4	K
MV lower limit value (MVLL)	Value higher than set variable is output.	$0 \sim 100$ (\%)	PD, K
MV higher limit value (MVHL)	Value lower than set variable is output.	$0 \sim 100$ (\%)	PD, K
Rate of PV change limit value ($\triangle \mathrm{MVL}$)	When the rate of change from previous PV to present PV exceeds this set variable, specified PM is set.	$0 \sim 100$ (\%)	K

CAUTION

1. Manual selection: MV lower limit (MVLL) and MV higher limit (MVHL) become inactive. However, MV output value is output in the range of $0 \leqq M V \leqq 100$.
2. MVLL \leqq MVHL is the requirement for MV lower limit (MVLL) and MV higher limit (MVHL).
(3) PID

PID operation is executed by use of SV and PV and the result is stored into (A).

Coding

Step Number	Instruction	Device Number
123	PID	K1
124		PD51
125		K5
126		PD52
127		PD53
128		PD54

\leftarrow Operation expression selection (FROM)
\leftarrow Set variable (SV)
\leftarrow Proportional constant (KP)
\leftarrow Integration constant (TI)
\leftarrow Differentiation constant (TD)
\leftarrow Dead band (G)

Details of Parameter Settings

Parameter	Setting	Setting Range	Device Which Can Be Processed
Operation expression selection (FORM)	Select from the following operation expressions. (See the following pages for the explanation of operation expressions.) 1. Basic velocity type normal action 2. Basic velocity type reverse action 3. Basic positional normal action 4. Basic positional reverse action 5. Error square velocity type normal action 6. Error square velocity type reverse action 7. Error square positional normal action 8. Error square positional reverse action	$\begin{aligned} & 1,2,3,4, \\ & 5,6,7,8 \end{aligned}$	K
Set variable (SV)	Set variable is set.	$0 \sim 100 \%$	PD, K
Proportional constant (KP)	Proportional constant is set.	0~100\%	PD, K
Integration constant (TI)	Integration constant is set.	$0 \sim 32700 \mathrm{sec}$	PD, K
Differentiation constant (TD)	Differentiation constant is set.	$0 \sim 255 \mathrm{sec}$	PD, K
Dead band (G)	Dead band is set.	0 ~ 100\%	PD, K

PID Operation Expressions

FROM	NAME	OPERATION EXPRES	SION
K1	Basic velocity type normal run Basic Flow	$\begin{aligned} E V n= & P V n-S V n \\ \Delta M V= & K p\left\{(E V n-E V n-1)+\frac{T s}{T_{1}} E V n\right. \\ & \left.-\frac{T D}{T s}(2 P V n-1-P V n-P V n-2)\right\} \\ M V n= & \Sigma \Delta M V \end{aligned}$	SVn Set variable PVn Process variable at present sampling PVn-1Process variable 1 period prior to present sampling
K2	Basic velocity type reverse run $\begin{aligned} & \text { Basic } \\ & \text { flow } \end{aligned}$	$\begin{aligned} E V n= & S V n-P V n \\ \Delta M V= & K p\left\{(E V n-E V n-1)+\frac{T s}{T_{1}} E V n\right. \\ & \left.+\frac{T D}{T s}\left(2 P V n-1-P V n-P V n_{-2}\right)\right\} \\ M V n= & \Sigma \Delta M V \end{aligned}$	PVn-2Process variable 2 periods prior to present sampling $\Delta M V$ Rate of output change MVn Output variable
K3	Basic positional normal run	$\begin{aligned} & E V n=P V n-S V n \\ & M V n=K P E V n+\frac{T s}{T 1} \Sigma E V+\frac{T D}{T s}\left(E V n-E V n_{1}\right) \end{aligned}$	EVn Error at present sampling EVn-1Error 1 period prior to present sampling KP Proportional constant
K4	Basic positional reverse run	$\begin{aligned} & E V n=S V n-P V n \\ & M V n=K P E V n+\frac{T s}{T_{1}} \Sigma E V+\frac{T o}{T s}\left(E V n-E V n_{-1}\right) \end{aligned}$	Ts Sampling period Ti Integration constant To Differentiation constant
K5	Error square velacity type normal run	$\begin{aligned} E V n= & P V n-S V n \\ \Delta M V= & K p\{E V n \times\|E V n\|-E V n-1 \times\|E V n-1\| \\ & +\frac{T s}{T_{1}} \times E V n \times\|E V n\| \\ & \left.-\frac{T D}{T s}(2 P V n-1-P V n-P V n-2)\right\} \\ M V n= & \Sigma \Delta M V \end{aligned}$	
K6	Error square velocity type reverse run	$\begin{aligned} E V n= & S V n-P V n \\ \Delta M V= & K P\{E V n \times\|E V n\|-E V n-1 \times\|E V n-1\| \\ & +\frac{T s}{T_{1}} \times E V n \times\|E V n\| \\ & \left.+\frac{T D}{T s}(2 P V n-1-P V n-P V n-2)\right\} \\ M V n= & \Sigma \Delta M V \end{aligned}$	
K7	Error wquare positional normal run	$\begin{aligned} E V n= & P V n-S V n \\ M V n= & K p E V n \times\|E V n\|+\frac{T s}{T i} \Sigma E V \times\|E V\| \\ & +\frac{T D}{T s}(E V n \times\|E V n\|-E V n-1 \times\|E V n-1\|) \end{aligned}$	
K8	Error square positional reverse run	$\begin{aligned} E V n= & S V n-P V n \\ M V n= & K p E V n \times\|E V n\|+\frac{T s}{T i} \Sigma E V \times\|E V\| \\ & +\frac{T D}{T s}(E V n \times\|E V n\|-E V n-1 \times\|E V n-1\|) \end{aligned}$	

5.4 Communication with Programmable Controller

5.4.1 I/O signals and allocation

I/O signals on the programmable controller side of KD81 are as follows. X and Y numbers apply when the KD81 is loaded into the slot number 1 of base unit.

Input Signal

Input Number	Content	
X0	PD data 2^{0}	PM coil (M0)
$\times 1$	" 2^{1}	PM coil (M1)
$\times 2$, 2^{2}	PM coil (M2)
x3	" 2^{3}	PM coil (M3)
X4	" 2^{4}	PM coil (M4)
X5	" 2^{5}	PM coil (M5)
X6	" 2^{6}	PM coil (M6)
$\times 7$	", 2^{7}	PM coil (M7)
X8	" 2^{8}	PM coil (M8)
X9	" 2^{9}	PM coil (M9)
XA	" 2^{10}	PM coil (M10)
XB	" 2^{11}	PM coil (M11)
xc	" 2^{12}	PM coil (M12)
XD	" 2^{13}	PM coil (M13)
XE	" 2^{14}	PM coil (M14)
XF	, SIGN	PM coil (M15)
X10	KD81 output PY0	
$\times 11$	"	PY1
X12	"	PY2
$\times 13$	"	PY3
X14	"	PY4
$\times 15$	"	PY5
X16	"	PY6
X17	"	PY7
$\times 18$	"	PY8
X19	"	PY9
X1A	"	PY10
X1B	"	PY11
$\times 1 \mathrm{C}$	KD8	eady
X1D		
X1E	Write	pleted
X1F	Read	pleted

Output Signal

Output Number	Content	
Y0	PD data 2^{0}	PM coil (MO)
Y1	-. 2^{1}	PM coil (M1)
Y2	" 2^{2}	PM coil (M2)
Y3	" 2^{3}	PM coil (M3)
Y4	" 2^{4}	PM coil (M4)
Y5	" 2^{5}	PM coil (M5)
Y6	\% 2^{6}	PM coil (M6)
Y7	, 2^{7}	PM coil (M7)
Y8	" 2^{8}	PM coil (M8)
Y9	" 2^{9}	PM coil (M9)
YA	" 2^{10}	PM coil (M10)
YB	// 2^{11}	PM coil (M11)
YC	" 2^{12}	PM coil (M12)
YD	, 2^{13}	PM coil (M13)
YE	" 2^{14}	PM coil (M14)
YF	, SIGN	PM coil (M15)
Y10	KD81 input PX0	
Y11	"	PX1
Y12	"	PX2
Y13	"	PX3
Y14	"	PX4
Y15	"	PX5
Y16	"	PX6
Y17	"	PX7
Y18	PD number	etting 2^{0}
Y19	PD numbe	etting 2^{1}
Y1A	PD numbe	etting 2^{2}
Y1B	PD numbe	etting 2^{3}
Y1C	PD numbe	etting 2^{4}
Y1D	Programmable	ntroller ready
Y1E	Write	
Y1F	Read	$\underline{ }$

Note: indicates that the signal is effective at its rise.

5.4.2 Communication with Programmable Controller

The programs for communication with programmable controller can be classified as shown below:
(1) Write to input (PX) of KD81
(2) Write to data register (PD) of KD81
(3) Write to temporary memory (PM) of KD81
(4) Read from output (PY) of KD81
(5) Read from data register (PD) of KD81
(6) Read from temporary memory (PM) of KD81

Since communication of the KD81 with the programmable controller is made by a handshaking system, the aforementioned communication programs (2), (3), (5) and (6) cannot be run at the same time. Therefore, be sure to perform programming by providing interlock so that the programs are run alternately.

5. PROGRAMMING

5.4.3 Write from programmable controller to KD81

(1) Write to PX

1) By outputting corresponding Y numbers ($\mathrm{Y} 10 \sim 17$) of programmable controller to PX of KD81, PX can be turned on and off.
2) Program example of write to PX

(2) Write to PD
3) Write procedure
a. Set written data to $Y O \sim Y F$.
b. Set PD numbers, which are desired to be written, to $\mathrm{Y} 18 \sim \mathrm{Y} 1 \mathrm{C}$.
c. After completing a. and b. above, turn on the write command Y1E.

Turn off Y1E by leading edge of write completion signal (X1E). (Write completion signal $\mathrm{X1E}$ is automatically turned off by trailing edge of Y1E.)
2) Write timing

3) Program example of write to PD

Fig. 5.1 shows a program example for writing data registers D11~25 to PD1~15.

Fig. 5.1 Program Example for Write to PD
(3) Write to PM

Write to PM is a batch write of 16 points, PMO \sim PM15. Therefore, prepare 16 Ms in serial order, which correspond to PMO \sim PM15, on programmable controller side and write data by use of these Ms.
a. Set written data of PMO \sim PM15 to YO \sim YF.
b. Set all of $\mathrm{Y} 18 \sim \mathrm{Y} 1 \mathrm{C}$ to " 0 ".
c. After completing the a. and b. above, turn on the write command $Y 1 E$.

Turn off Y1E by leading edge of write completion signal (X1E). (Write completion signal $\mathrm{X1E}$ is automatically turned off by trailing edge of Y 1 E .)

1) Write timing

Written data set

All of $\mathrm{Y} 18 \sim \mathrm{Y} 1 \mathrm{C}$ are reset to " 0 ".

Write (Y1E)

Write completion (X1E)

2) Program example of write to PM

Example:

Fig. 5.2 shows a program example for batch write of temporary memories M30 ~ 45 which correspond to PMO ~ 15 .

Table 5.2 Program Example for Write to PM

5.4.4 Read from KD81

(1) Read of PY

1) By inputting X numbers ($X 10 \sim 1 B$) of programmable controller which correspond to $P Y$ of KD81, the content of PY can be read.
2) Program example for read of PY

(2) Read of PD
3) Read procedure
a. After setting read PD numbers to Y18 ~ Y1C, turn on the read command (Y1F).
b. KD81 reads the values indicated by PD numbers at the rise of read signal, and turns on the read completion signal (X1F).
c. After making sure that the read completion signal (X1F) is on, read data and turn off the read signal (Y1F).
d. KD81 turns off read completion signal (X1F) at the rise of read signal (Y1F).
4) Read timing

PD number set

Read command (Y1F)

KD81 data set

Read completion (X1F)

5. PROGRAMMING

3) Protram example of read of PD

Fig. 5.3 shows a program example for read of PD1 ~ 15 to D11 ~ 25.

Fig. 5.3 Program Example for Read of PD
(3) Batch read of PM

Read of PM is a batch read of 16 points, PMO ~ 15. Therefore, prepare 16 Ms in serial order, which correspond to PMO ~ 15, on programmable controller side and read data by use of these Ms.

1) Read procedure
a. After setting all of Y18 ~ Y1C to ' 0 "', turn on the read command (Y1F).
b. At the rise of read signal, KD81 performs batch read of PMs and turns on the read completion signal (X1F).
c. After making sure that the read completion signal (X1F) is on, execute batch read of data from 16 Ms and turn off the read signal (Y1F).
d. At the rise of read signal (Y1F), KD81 turns off the read completion signal (X1F).
2) Read timing

All of $\mathrm{Y} 18 \sim \mathrm{Y} 1 \mathrm{C}$ are reset to " 0 ".

Read command (Y1F)

Batch reset of KD81 PMs

Read completion (X1F)

3) Program example of read of PM

Fig. 5.4 shows a program example for batch read of PMO ~ 15 to $\mathrm{M} 10 \sim 25$.

Fig. 5.4 Program Example of Read of PD

6. ERROR MESSAGE LIST

6. ERROR MESSAGE LIST . 75 ~ 76

6. ERROR MESSAGE LIST

When the RUN indicator LED on the KD81 flickers, load Type KD81HP PID programmer into KD81 and press the TST G GO keys. Then, the screen shows the content of error as indicated in Table 6.1. Therefore, take a proper action according to the corrective action described in the table.

Error Screen Display Example	Error Content	Corrective Action
ERROR TABLE PRG. 1 STEP 123 I DOO7 ARITHMETICERR. CODE 04	Error Code 01: Operation result has exceeded 9.2×10^{18}.	Correct user program so that operation result does not exceed 9.2×10^{18}.
	02: Operation result has exceeded -9.2×10^{18}	Correct user program so that operation result does not exceed -9.2×10^{18}.
	03: Square root or logarithm of zero or negative number has been calculated.	Since the error is as mentioned at left, correct the program which has the displayed step.
Display Program number Step number and its instruction Arithmetic operation error code	04: Division has been done by zero.	Since the error is as mentioned at left, correct the program which has the displayed step.
	06: Due to hardware error, operation time has exceeded specified value.	Since the error is due to hardware failure, change the KD81.
ERRORTABLE PRG. 1 LOOPERROR	Program is repeatedly run in a certain range of user program and the END instruction is not executed, resulting in overtime.	Press \square TST RD 1 \square (GO) SSN 0 GO keys and then repeatedly press (GO) key to check the operation of program. Correct a faulty program.
Display Program number		
ERROR TABLE PRG. 1 STEP 115 SAL M009	Instruction code of program, which be being processed, has a code which cannot be decoded by KD81.	The program with the displayed step has an error. Correct the program.
Display Program number Step number and its instruction		
NOERROR	When TST KO keys are press ed while RUN indicator LED of KD81 is lit, the screen shown at left is displayed. While the LED is lit, do not perform the above operation.	

7. EXTERNAL DIMENSIONS OF KD81

7. EXTERNAL DIMENSIONS OF KD81 . 77 ~ 78

7. EXTERNAL DIMENSIONS OF KD81

8. CAUTIONS FOR APPLICATION
8. CAUTIONS FOR APPLICATION $79 \sim 84$
8.1 Run during Instantaneous Stop 80
8.2 Run during Error 80
8.3 Run during KCPU "STOP" 80
8.4 Selection of Power Supply Unit 81

8. CAUTIONS FOR APPLICATION

8. CAUTIONS FOR APPLICATION

8.1 Run during Instantaneous Stop

Resumption of operation of the KD81 will be automatic in the event that power loss occurs to the base unit of the PC for 20 msec or longer and is then restored. If the KD81 is in the process of being shut down by use of the KD81HP and power is restored plus field conditions activate the program, the KD81 will operate. Caution should be exercised by the user for these reasons.

8.2 Run during Error

In the event that error occurs in any of the programs when plural programs (a maximum of four programs) are run, the other programs will stop and the "RUN" LED on KD81 will flicker.
Since the KD81 ready signal (X1C) turns off in case of error, the KCPU can detect the error of KD81 by this signal. (For the output states at error detection, see Section 8.4.)

8.3 Run during KCPU STOP

When the "RUN" switch on KCPU is moved to STOP position during operation, the program of KD81 does not stop. Since the program of KD81 continues running and provides output, prepare a user program of KCPU so that the program turns off the programmable controller ready signal (Y1D).

KCPU user program example

When the programmable controller ready signal (Y1D) turns off, the digital output of KD81 turns off and the analog output of $4 \sim 20 \mathrm{~mA}$ changes to 0 mA and $0 \sim 5 \mathrm{~V}$ changes to 0 V .

8.4 Output State of KD81

Outpu	Output State at Error Detection	Output State of Stop Program	Output State at Program Stop	Output State at OFF of programmable Controller Ready Signal
RYO~11	OFF	Remain the same.	Remain the same.	Operate during program run.
Digital output RY12~15	OFF	Remain the same	OFF	OFF
Analog output	$0 \sim 5 \mathrm{~V}$ changes to 0 V and $4 \sim 20 \mathrm{~mA}$ changes to 0 mA .	Held at the present state. If left at this state, output reduces 5 V in four hours.	$0 \sim 5 \mathrm{~V}$ changes to 0 V and $4 \sim 20 \mathrm{~mA}$ changes to 0 mA .	$0 \sim 5 \mathrm{~V}$ changes to 0 V and $4 \sim 20 \mathrm{~mA}$ changes to 0 mA .

CAUTION

When the analog output circuit element is damaged, analog output becomes unstable.

8.5 Caution for System Design

For safety and protection of the control system and also from a fail safe aspect, circuits which will result in machine damage or accident due to erroneous operation (such as an emergency stop circuit, a protection circuit, and an interlock circuit) should be located in the exterior of the programmable controller.

8.6 Instruction Procassing

Avoid mingling a logical processing instruction and a data processing instruction. (Especially when a data processing instruction is executed after the execution of a logical processing instruction or when a logical processing instruction is executed after the execution of a data processing instruction)

1. Example of executing a data processing instruction after the execution of a logical processing instruction

Step number

123	LDA	PX1 (Logical processing)
124	STA	PD10 (Data processing)

2. Example of executing a logical processing instruction after the execution of a data processing instruction

Step number

123	LDA	K1 (Logical processing)
124	JC	K150 (Data processing)

8.7 Timer

1. Even when the program is at stop, the timer continues counting while the coil is on.
2. When the coil of timer is turned off, the timer indicates a temporary value which is a count value prior to turning off the coil. When the coil is turned on again, the timer resumes counting.

8.8 Temporary Value of Counter

The following example explains the relation between the number of input pulses and the temporary value of counter. In this example, pulses are input after a preset value of 100 is set to the counter.

Number of Input Pulses	Temporary Value of Counter	
	UP Counter	DOWN Counter
0	100	100
First pulse	100	100
Second pulse	101	99
Third pulse	102	98

After the set instruction of preset value to the counter is executed, the counter is actually preset by the first pulse input. Actually, therefore, the second and succeeding pulse inputs are effective as count values.

8.9 Cautions for Programming When Counter (PC2 or PC3) Is Used

When the counter PC2 or PC3 is used, insert an LDA instruction (LDA PC2 for PC2, LDA PC3 for PC3) into a program which is always run per scan time.

8. CAUTIONS FOR APPLICATION

8.10 Selection of Power Supply Unit

The relation between the power supply capacities of power supply units and the load currents of CPU, KD81 (HP), and I/O units are as shown below:

CAUTION

When power supply unit with * mark is used, supply 24VDC from exterior.

MEMO

\qquad

9. MAINTENANCE

9. MAINTENANCE.$85 \sim 86$9.1 Handling Instructions 86
9.2 Storage 86

9. MAINTENANCE

9.1 Handling Instructions

(1) Since the case and connectors of this programmable controller are made of plastic, do no drop or give strong shock.
(2) Do not remove the printed circuit boards from the case. Removal may cause board failure.
(3) At the time of wiring, take care to prevent the entry of wire chips from the top into the unit. If such chips have entered, remove them.
(4) Do not overtighten the fixing screws of unit.

9.2 Storage

When the programmable controller is stored as a single unit or mounted inside control panel or machine, never keep it at the locations and environments described below:
(1) Locations where ambient temperature is outside the range of $-10^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$.
(2) Locations where ambient humidity is outside the range of 10 and $90 \% \mathrm{RH}$.
(3) Locations where dew condensation takes place due to sudden temperature changes.
(4) Locations exposed to the weather or the direct rays of the sun.
(5) Locations where there are especially a lot of conductive powder such as dust and iron filings oil mist, and salt, and also where there exist corrosive gases.

IMPORTANT

(1) Design the system so that the protection and safety circuits, which are furnished to protect the programmable controller from troubles, are located externally of the cabinet.
(2) Since the printed circuit boards are mounted with electronic parts, which will be adversely affected by static electricity, handle them as described below when they are directly handled.

1) Ground human body and work bench.
2) Do not directly touch the conductive areas of printed circuit board and its electrical parts with a non-grounded material.
APPENDIX $87 \sim 90$
Process Time List 88

APPENDIX PROCESS TIME LIST

Since average process times are shown in the table, actual process time may vary slightly.
(Unit: $\mu \mathrm{s}$)

	A	PX	PY		PM	PD	PC	PT	K
			PYO~ 11	PY12 ~ 15					
NOP	60	-	-	-	-	-	-	-	-
NOT	-	90	90	100	90	-	-	-	-
AND	-	90	90	100	90	-	-	-	-
OR	-	90	90	100	90	-	-	-	-
SET	-	80	80	100	80	-	60	60	-
RST	-	80	80	100	80	-	60	60	-
END	180	-	-	-	-	-	-	-	-
LDA	-	80	80	100	80	90	180	190	80
STA	-	80	80	110	80	80	210	210	-
+	-	-	-	-	-	250	280	310	240
-	-	-	-	-	-	250	280	310	240
-	-	-	-	-	-	280	310	320	260
1	-	-	-	-	-	270	320	320	270
$\sqrt{ }$	500	-	-	-	-	-	-	-	-
\%	-	-	-	-	-	400	430	460	390
LOG	2150	-	-	-	-	-	-	-	-
ABS	180	-	-	-	-	-	-	-	-
$>$	-	-	-	-	-	320	370	370	350
$<$	-	-	-	-	-	320	370	380	350
$=$	-	-	-	-	-	320	380	370	340
JC	-	-	-	-	-	-	-	-	90
JMP	-	-	-	-	-	-	-	-	80
HS	-	-	-	-	-	410	420	430	360
LS	-	-	-	-	-	380	430	450	370
HLM	-	-	-	-	-	430	-	-	370
LLM	-	-	-	-	-	380	-	-	350

Function	Device Combination	Process Time ($\mu \mathrm{s}$)	Function	Device Combination	Process Time ($\mu \mathrm{s}$)
MOV	$X \rightarrow X$	100	MOV	$\mathrm{K} \rightarrow \mathrm{D}$	180
MOV	$X \rightarrow Y$	100	MOV	$K \rightarrow C$	240
MOV	$X \rightarrow M$	100	MOV	$K \rightarrow T$	240
MOV	$Y \rightarrow X$	100			
MOV	$\mathbf{Y} \rightarrow \mathrm{Y}$	110	Function	Device PD Is Used	Process Time ($\mu \mathrm{s}$)
MOV	$\boldsymbol{Y} \rightarrow \mathrm{M}$	100	SAL		580
MOV	$\mathrm{M} \rightarrow \mathrm{X}$	100	HAL		580
MOV	$\mathbf{M} \rightarrow \mathbf{Y}$	110	LAL		580
MOV	$\mathrm{M} \rightarrow \mathrm{M}$	100	PIX		1060
MOV	$D \rightarrow D$	190	PIY		1400
MOV	$D \rightarrow C$	260	PID	K1	3990
MOV	$D \rightarrow T$	260	PID	K2	3960
MOV	$C \rightarrow$ D	300	PID	K3	4720
MOV	$C \rightarrow C$	370	PID	K4	4770
MOV	$C \rightarrow T$	350	PID	K5	4410
MOV	$T \rightarrow$ D	270	PID	K6	4310
MOV	$\mathrm{T} \rightarrow \mathrm{C}$	320	PID	K7	5430
MOV	$T \rightarrow T$	310	PID	K8	5410

MEMO

[^0]: Note: For details of errors, see Section 6 "ERROR MESSAGE LIST".

