MITSUBISHI PROGRAMMABLE CONTROLLER MELSEG-K

Instruction Manual

PID Control Unit Type KD81

- CONTENTS -

1. G	SENERAL DESCRIPTION	1
1.1 1.2	General Description	
2. S	SYSTEM CONFIGURATION	2
2.1	Equipment	
2.2 2.3	System Configuration	
3. S	PECIFICATIONS	3
3.1	General Specifications	-
3.2	Performance Specifications	
	3.2.1 Performance specifications	
	3.2.2 List of instructions and possible devices	
	3.2.4 List of S and D of PID instructions	
	3.2.5 Program memory map	
3.3	Specifications of Connector for External Connection of KD81	
3.4	Type KD81 PID Programmer	
3.5	Type K70CBL Connection Cable (Standard for KD81HP)	
4. H	IANDLING	4
4.1	Controls and Explanations	
4.1 4.2	Controls and Explanations.304.1.1 KD81 panel.304.1.2 Interior of KD81.314.1.3 Adjustments of volumes.324.1.4 Adjusting procedures of volumes.33External Wiring.354.2.1 Analog input pip ergenerate and external wiring method.35	
4.1 4.2	Controls and Explanations.304.1.1 KD81 panel304.1.2 Interior of KD81314.1.3 Adjustments of volumes.324.1.4 Adjusting procedures of volumes33External Wiring354.2.1 Analog input pin arrangement and external wiring method354.2.2 Analog output pin arrangement and external wiring method36	
4.1 4.2	Controls and Explanations.304.1.1 KD81 panel.304.1.2 Interior of KD81.314.1.3 Adjustments of volumes.324.1.4 Adjusting procedures of volumes33External Wiring.354.2.1 Analog input pin arrangement and external wiring method354.2.2 Analog output pin arrangement and external wiring method364.2.3 Counter input pin arrangement and external wiring method37	
4.1 4.2	Controls and Explanations.304.1.1 KD81 panel304.1.2 Interior of KD81314.1.3 Adjustments of volumes.324.1.4 Adjusting procedures of volumes33External Wiring354.2.1 Analog input pin arrangement and external wiring method354.2.2 Analog output pin arrangement and external wiring method364.2.3 Counter input pin arrangement and external wiring method374.2.4 Digital output pin arrangement and external wiring method38	
4.1	Controls and Explanations.304.1.1 KD81 panel.304.1.2 Interior of KD81.314.1.3 Adjustments of volumes.324.1.4 Adjusting procedures of volumes.33External Wiring.354.2.1 Analog input pin arrangement and external wiring method.354.2.2 Analog output pin arrangement and external wiring method.364.2.3 Counter input pin arrangement and external wiring method.374.2.4 Digital output pin arrangement and external wiring method.384.2.5 Wiring Noise Considerations.39	
4.1 4.2 5.	Controls and Explanations.304.1.1 KD81 panel304.1.2 Interior of KD81314.1.3 Adjustments of volumes.324.1.4 Adjusting procedures of volumes33External Wiring354.2.1 Analog input pin arrangement and external wiring method364.2.2 Analog output pin arrangement and external wiring method364.2.3 Counter input pin arrangement and external wiring method374.2.4 Digital output pin arrangement and external wiring method384.2.5 Wiring Noise Considerations39PROGRAMMING.41 ~ 74	5
4.14.25.1	Controls and Explanations	5
4.1 4.2 5.1 5.2	Controls and Explanations	5
4.1 4.2 5.1 5.2 5.3	Controls and Explanations	5
4.1 4.2 5.1 5.2 5.3	Controls and Explanations	5
4.1 4.2 5.1 5.2 5.3	Controls and Explanations	5
4.1 4.2 5.1 5.2 5.3	Controls and Explanations.304.1.1 KD81 panel304.1.2 Interior of KD81314.1.3 Adjustments of volumes.324.1.4 Adjusting procedures of volumes33External Wiring354.2.1 Analog input pin arrangement and external wiring method354.2.2 Analog output pin arrangement and external wiring method364.2.3 Counter input pin arrangement and external wiring method374.2.4 Digital output pin arrangement and external wiring method384.2.5 Wiring Noise Considerations39PROGRAMMING.41 ~ 74Device Names.42Data Range.43Explanation of Instructions445.3.1 Logical instructions465.3.3 Arithmetic operation instructions48	5
4.1 4.2 5.1 5.2 5.3	Controls and Explanations	5

	5.3.6 Special instructions.		
E /	5.3.7 PID Instructions		
5.4	E 4.1 L/O signal and allocation		
	5.4.1 I/O signal and anacation		
	5,4,2 Communication with programmable controller		
	5.4.3 Write from programmable controller of ND61		
		//	
6. 1	ERROR MESSAGE LIST	75 ~ 76	6
7	EXTERNAL DIMENSIONS OF KD21		
		77~ 78	7
8.	CAUTIONS FOR APPLICATION	79 ~ 84	8
8.1	Run during Instantaneous Stop	80	~
8.2	Run during Error	80	
8.3	Run during KCPU "STOP"	80	
8.4	Selection of Power Supply Unit		
0		a	
9.1		85 ~ 86	9
9.1	Handling Instructions	86	
9.2	Storage	86	
ΔΡΙ	PENDIX	07 00	
		87~90	
Droc	one Time List	00	
FIOC	C35 TILLE LIST	88	

11.

. . .

1. ($GENERAL \; DESCRIPTION \dots \dots 3 \sim 6$
1.1	General Description
1.2	PID Control

.5

1. GENERAL DESCRIPTION

1.1 General Description

The PID control unit KD81 (hereinafter referred to as "KD81") is a MELSEC-K series functional unit developed to enable high-speed and high-accuracy process control with a programmable controller. The KD81 incorporates a microprocessor and processes PID operations at high speed and in high accuracy. Equipped with a variety of instruction functions required for PID control, the KD81 also permits various types of process control.

[Features]

- The most suitable PID control can be made. By selection of positional, velocity or error square type PID operation, the KD81 can afford to execute PID control which is best-suited for controlled object.
- Four loop can be controlled by one KD81 unit Using 4 channels of analog I/O circuits, the KD81 can simultaneously execute PID control with a maximum of 4 loops.
- High-speed processing of PID operation can be made.
 High-speed processing can be done at a sampling period of minimum 0.01 second.
- 4) Various types of alarm detection functions The rate of PV (process variable) change check function and the rate of MV (manipulated variable) change check function are provided to allow the monitor of PV and MV.
- 5) A variety of instruction functions Higher-grade control can be made with 33 types of instructions such as PID and special instructions required for PID control and also arithmetic operation and logical instructions.
- Easy programming By use of PID programmer KD81HP, direct programming can be accomplished.

For programming by use of KD81HP, see the "Instruction Manual for Type KD81HP PID Programmer".

(1) General description of PID control

PID control is utilized for a process control system which controls flow rate, velocity, air flow, temperature, tension, etc. The basic block diagram is shown below.

In process control, an automatically functioning mechanism is provided so that controlled variable, such as flow rate, is measured and compared with a pre-provided desirable variable, i.e. set variable, and if error exists between these variables, the controller regulates output depending on the degree of error to always equalize the controlled variable to the set variable. In PID control, the controller makes the operations of proportional variable (P), integration variable (I), and differentiation variable (D) on the basis of error (set variable minus process variable) and these variables are used as manipulated variables.

Fig. 1.1 PID Control Block Diagram

(2) P, I, and D actions

(P) Proportional control action

This action causes manipulated variable, which is proportional to the error (difference between set variable and process variable), to function. However, when offset (residual error) occurs due to the variations of load variable, etc., the error cannot be corrected only by the proportional control action.

() Integral control action

When error and offset occur, this action functions consecutively to eliminate them depending on their magnitude. (Proportional to the time integration of error)

(D) Derivative control action

When error begins to occur due to disturbance, etc., this action prevents large variations of controlled unit by providing large corrective action while the error is small. Therefore, this action does not function for a uniform error, such as offset, irrespective of its magnitude.

(P+I) ------ This action functions to correct control, which does not have offset, and error due to disturbance.

(P+1+D) --- This action functions as described in (P+1) and also functions to immediately correct sudden changes.

station in the second second

2. S	YSTEM CONFIGURATION
2.1	Equipment
2.2	System Configuration
2.3	Internal Configuration of KD8111

2. SYSTEM CONFIGURATION

2.1 Equipment

Type Equipment		Qty
KD81	KD81 (with 48 pin connectors for external connection)	1
KD81HP	KD81HP, K70CBL, KG73 (KD81HP containing case)	1 each

Table 2.1 Equipment

1. PID control unit KD81

MELSEG-K

2. PID programmer KD81HP

3. Connection cable K70CBL

4. PID programmer containing case KG73

2.2 System Configuration

MELSER-K

SEG-

K

2.3 Internal Configuration of KD81

ζ

R

ր Ս

K

ΜΕΜΟ

•••••••••••••••••••••••••••••••••••••••	
	· · · · · · · · · · · · · · · · · · ·
	·····
	,

3. 8	SPECIFICATIONS	13~28
3.1	General Specifications	14
3.2	Performance Specifications	15
	3.2.1 Performance specifications	15
	3.2.2 List of instructions	19
	3.2.3 List of instructions and possible devices	24
	3.2.4 List of S and D of PID instructions	
	3.2.5 Program memory map	26
3.3	Specifications of Connector for External Connection of KD81	
3.4	Type KD81 PID Programmer	28
3.5	Type K70CBL Connection Cable (Standard for KD81HP)	28

3. SPECIFICATIONS

3.1 General Specifications

ltem	Specifications			
Operating ambient temperature	0~55°C			
Storage ambient temperature	_10∼ 75°C			
Operating ambient humidity	$10 \sim 85\%$ RH (no dew condensation)			
Storage ambient humidity	$10 \sim 90\%$ RH (no dew condensation)			
Vibration resistance	Conforms to JIS C 0911 IIB class 3 (16.7 Hz, 3-mm double amplitude, 2 h			
Shock resistance	Conforms to JIS C 0912 (10 g x 3 times in X, Y, Z directions)			
Operating ambience	There should be no corrosive gas and particularly dust should be minima			
Cooling system	Self-cooling			

MELSEG-K

Table 3.1 General Specifications

14

C

3.2 Performance Specifications

3.2.1 Performance specifications

Item		Specifications		
Exclusively us	ed number of inputs/outputs	32 points		
1	Function instructions	33 types		
Instruction	Word length	32 bits (4 bytes)/step $1 \sim 6$ step instruction		
Instru	iction execution time	Refer to Appendix (Page 87)		
Drogram	Capacity	A total of 2000 steps in program		
rrogram	Number of loops	A maximum of 4 loops		
	Sampling period	0.01 \sim 99.99 seconds (Setting is possible in units of 10ms.)		
	PID operation	8 types of operation expressions (positional, velocity type, and error square type can be selected)		
	Proportional constant (KP)	0.00 ~ 100.00		
PID constant setting range	Integration constant (TI)	0.01 ~ 32700.00 seconds		
	Differentiation constant (TD)	0.00 ~ 255.00 seconds		
Set vari	able setting range (SV)	0.00 ~ 100.00%		
Process v	arible range (PV)	0.00 ~ 100.00%		
Dead	band range (G)	0.00 ~ 100.00%		
	Number of circuits	4 channels (non-insulated)		
Analog input	Specifications	$0 \sim 5$ VDC Input resistance : 0.9 M Ω or larger 4 \sim 20mADC Input resistance : 250 Ω		
	Resolution	1/4096 (12 bit)		
	Number of circuits	4 channels (non-insulated)		
Analog output	Specifications	$\begin{array}{ll} 0\sim 5 \text{VDC} & \text{External load resistance}: 500\Omega \sim 1 M\Omega \\ 4\sim 24 \text{mADC} & \text{External load resistance}: 0\Omega \sim 600\Omega \end{array}$		
	Resolution	1/4096 (12 bit)		
	Number of circuits	4 channel (PY12 ~ PY15)		
Digital output	Specifications	Transistor output (Open collector) Rated working voltage, current : 12/24VDC, 0.1A 4 points/common		
	Number of circuits	2 channel (PC0, PC1)		
Frequency counter	Specifications	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
; -	Counting frequency	20 kHz (MAX.) DUTY 50%		
	Counting range	$0\sim 65535$ pulses/sampling period		

MELSEG-K

Table 3.2 Performance Specifications

4

	Item		Specifications			
	Number of circuit		2 channel (PC2, PC3)			
	Counter mode		UP COUNTER depending on i	, DOWN COUNTER, or UP/DOWN COUNTER, nitial setting.		
Counter	Specifications		5VDC 12VDC 24VDC	Input resistance : 330Ω (Input current : 7mA) Input resistance : $1.5K\Omega$ (Input current : 7mA) Input resistance : $1.5K\Omega$ (Input current : 13 mA)		
	Counting frequ	Jency		20 kHz (MAX.) DUTY 50%		
	Counting Range			-32678 ~ 32767		
Input	Number of points	8 points	$PX0 \sim PX7$ Write is possible from programmable cor			
Output	Number of points	12 points	PY0~PY11	Read is possible from programmable controller.		
Temporary	Number of points	16 points	PM0~PM15	Read and write are possible from programmable controller.		
memory		112 points	PM16~PM127	Read and write are not possible from pro- grammable controller.		
Dete engister	Number of points	3 D points	PD1 ~ PD31	Read and write are possible from programmable controller.		
Data register	Number of points 96 points	PD32~PD127	Read and write are not possible from pro- grammable controller.			
Timer	Number of points	16 points	PT0~PT15	10ms timer – maximum counting time: 327 sec		
l imer	Number of points 16 points		PT16~PT31	100ms timer – maximum counting time: 3276sec		

MELSEG-K

Table 3.	2 P	erformance	Spec	ificat	tions	(Conti	i nued)
----------	-----	------------	------	--------	-------	--------	----------------

Note) 1. The names of devices used for KD81 are provided with "P" to differentiate them from devices for programmable controller.

			Device Name Shown on KD81HP		
Description	Device Name of KD81	Device Name of Programmable Controller	Key	Display	
Input	РХ	X	РХ	X	
Output	PY	Y	PY	Y	
Temporary memory	РМ	М	РМ	м	
Timer	РТ	Т	РТ	Т	
Counter	PC	С	PC	C	
Data register	PD	D	PD	D	
Constant	К	К	к	к	

2. Frequency counters (PCO, PC1)..... The number of pulses input during sampling period is stored in PCO and PC1.

3. For details of temporary memory and data register functions, see the following pages.

Temporary Memory Number	Function					
PM 0~ 70 PM 75~ 80 PM 85~ 90 PM 95~ 100 PM105~ 110 PM113~ 127	Usable by user program as desired. (PM0 \sim 31 can be read and written by the programmable controller.)					
PM 71	Clear of program 1 PID operation					
PM 72	Clear of program 2 PID operation					
PM 73	Clear of program 3 PID operation					
PM 74	Clear of program 4 PID operation					
PM81	Alarm for PV (process value) change rate of analog input channel 1. "1" when the change rate is large.					
PM82	Alarm for PV (process value) change rate of analog input channel 2. "1" when the change rate is large.					
PM83	Alarm for PV (process value) change rate of analog input channel 3. "1" when the change rate is large.					
PM84	Alarm for PV (process value) change rate of analog input channel 4. "1" when the change rate is large.					
PM91	Automatic-manual selection of analog output channel 1. "1" when automatic is selected.					
PM92	Automatic-manual selection of analog output channel 2. "1" when automatic is selected.					
PM93	Automatic-manual selection of analog output channel 3. "1" when automatic is selected.					
PM94	Automatic-manual selection of analog output channel 4. "1" when automatic is selected.					
PM101	Alarm for MV (manipulated value) change rate of analog output channel 1. "1" when the change rate is large.					
PM102	Alarm for MV (manipulated value) change rate of analog output channel 2. "1" when the change rate is large.					
PM103	Alarm for MV (manipulated value) change rate of analog output channel 3. "1" when the change rate is large.					
PM104	Alarm for MV (manipulated value) change rate of analog output channel 4. "1" when the change rate is large.					
PM111	"1" when preset counter PC2 overflows. CTR FLAG					
PM112	"1" when preset counter PC3 overflows. CTR FLAG					

MELSEG-K

- Note: 1. Since 18 points of PM71 ~ 74, PM81 ~ 84, PM91 ~ 94, PM101 ~ 104, and PM111, 112 are used for fixed application, do not use these temporary memories for other purposes. (Once set, the aforementioned temporary memories do not turn off.)
 - 2. PM71 ~ 74 are temporary memories for clearing PID operation. Only when this PM turns from off to on, the preceding result of operation is cleared to "0" and PID operation is resumed from the initial state upon the execution of PID operation of program which corresponds to the turned-on PM.

Table 3.3 Temporary Memory Functions

Data Register Number	Function
PD 1~ 91 PD 94~ 100 PD105~ 110 PD115~ 120 PD125~ 127	Usable by user program as desired (PD1 \sim 31 can be read and written by the programmable controller.)
PD92	Area for storing set value of UP/DOWN counter PC2.
PD93	Area for storing set value of UP/DOWN counter PC3.
PD101	Area for storing PV (process value) of analog input channel 1.
PD102	Area for storing PV (process value) of analog input channel 2.
PD103	Area for storing PV (process value) of analog input channel 3.
PD104	Area for storing PV (process value) of analog input channel 4.
PD111	Area for storing automatic MV (manipulated value) of analog output channel 1.
PD112	Area for storing automatic MV (manipulated value) of analog output channel 2.
PD113	Area for storing automatic MV (manipulated value) of analog output channel 3.
PD114	Area for storing automatic MV (manipulated value) of analog output channel 4.
PD121	Area for storing manual MV (manipulated value) of analog output channel 1.
PD122	Area for storing manual MV (manipulated value) of analog output channel 2.
PD123	Area for storing manual MV (manipulated value) of analog output channel 3.
PD124	Area for storing manual MV (manipulated value) of analog output channel 4.

MELSEG-K

Note: Since 14 points of PD92 ~ 93, PM101 ~ 104, PM111 ~ 114, and PM121 ~ 124 are used for fixed application, do not use these data registers for other purposes.

Table 3.4 Data Register Functions

3.2.2 List of instructions

\square	Instruction	Logical Pro- cessing	Data Pro- cessing	Function	Content of Operation	Number of steps
suc	NOT	0		Inverse	(A) ← (Device)	1
, rctio	AND	0		Logical product	(A) ← (A) ∧ (Device)	1
insti	OR	0		Logical add	(A) ← (A) ∨ (Device)	1
gical	SET	0		Set	(Device) ← 1	1
د ا	RST	0		Reset	(Device) ← 0	1
er ons	STA	0	0	Storage (wR	$(\text{Device}) \leftarrow (A)$	1
ansfe ructi	LDA	0	0	Read	(A) ← (Device)	1
Tra	MOV	0	0	Transfer	S→D	1
	+		0	Add	(A) ← (A) + (Device)	1
s			0	Subtract	(A) ← (A) – (Device)	1
ction	*		0	Multiply	(A) ← (A) × (Device)	1
stru	1		0	Divide	(A) ← (A) ÷ (Device)	1
on in			0	Square root	$(A) \leftarrow \sqrt{(A)}$	1
eratio	РСТ		0	% operation	(A) ← {(A)/(Device)} × 100	1
Ō	LOG	and the	0	Common logarithm	(A) ← log 10 (A)	1
	ABS		0	Absolute value	(A) ← (A)	1
L SL	>		0	Comparison	When (A) \leq (Device), "the next step + 1" is run. When (A) $>$ (Device), the next step is run.	1
nparisc	<		0	Comparison	When (A) \leq (Device), the next step is run. When (A) \geq (Device), "the next step + 1" is run.	1
ins' Cor	=		0	Comparison	When (A) = (Device), the next step is run. When (A) \ge (Device), "the next step + 1" is run.	1
Suc	JMP	-	-	Unconditional jump	Program jumps to specified program step.	1
Branch instructio	JC	0		Conditional jump	 When condition [(A) = 1] holds, program jumps to specified program step. When condition [(A) = 1] does not hold, the next step is run. 	1
	HS (High select)		0	Magnitude comparison	When $(A) \ge (Device)$, $(A) \rightarrow (A)$ When $(A) \le (Device)$, $(Device) \rightarrow (A)$	1
suo	LS (Low select)		0	Magnitude comparison	When (A) \leq (Device), (A) \rightarrow (A) When (A) $>$ (Device), (Device) \rightarrow (A)	1
Istructi	HLM (High limiter)		0	Clamping of higher limit value	When (A) > (Device), (Device) \rightarrow (A)	1
ecial in	LLM (Low limiter)		0	Clamping of lower limit value	When (A) < (Device), (Device) \rightarrow (A)	1
ା ନ୍ଦ୍ର 	NOP	-	-	No operation	No operation is executed and the next step is run.	1
	END	_	_	Program end	Declares the end of program.	1

Table 3.5 List of Instructions

Number Instrucof Step Function **Contents of Operation** Symbol tion Function which provides ON AP HAL alarm output when (A) AP HS becomes higher than set Alarm HAL нs variable. 3 (High alarm) OFF (A) AP : Alarm set variable ALARM HS : Hysteresis variable Function which provides AP LAL ON Special instructions alarm output when (A) AP HS becomes lower than set LAL HS variable. Alarm 3 (Low alarm) OFF (A) AP : Alarm set variable ALARM HS : Hysteresis variable Function which provides SAL AP ON alarm output when (A) AP AO is within set variable SAL HS Alarm plus ON range. (Set 3 alarm) OFF (A) AP : Alarm set variable ALARM AO : Alarm output range

 Table 3.5
 List of Instructions (Continued)

MELSEG-K

	In- struc- tion	Symbol	Function	Number of Step
· .	•	PIX (A) CH α ΔPVL	Analog input signal of process is converted into digital value and is stored into (A) and specified data register.	
			CH A/D converter channel setting Specify which of 4 channels of A/D converter is input.	
			 α Filter coefficient Set the degree of filtering. As coefficient approaches zero, filter becomes inactive. 	
PID instructions	PIX	Setting of RangeCHK1, 2, 3, 4 α $0-1$ ΔPVL $0-100$ (%)I/VCurrent input : 1 Voltage input : 0	ΔPVLRate of PV change limit value When the rate of change from the previous PV to present PV exceeds this set variable, spe- cified PM is set.CH1PM81 CH2CH2PM82 CH3CH4PM84	4
			 I/V Specify current or voltage mode. When current mode is specified, 4 – 20 mA is converted into 0 – 100%. When voltage mode is specified, 0 – 5 V is converted into 0 – 100%. Converted analog value is stored into (A) and also into the next data register. CH1 PD101 CH2 PD102 CH3 PD103 CH4 PD104 	

Table 3.5 List of Instructions (Continued)

- 21

MELSEG-K

\backslash	In- struc- tion	Symbol		Function)	-	Number of Step
ID instructions	ΡΙΥ	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Digital value register is cor When AUTO select switch is is output. Whe the content of mined by chann Channel Select Signal CH1 PM9 OFF CH2 PM92 OFF CH3 PM92 OFF CH3 PM92 OFF CH4 PM94 OFF	of (A) of verted in position selected, fon MAN pod data regist el, is outp Output Value PD101 PD102 PD102 PD103 PD104 PD104 PD104	or speci to anal of MA the contro- osition is cer, whic out. Select Signal PM91 ON PM92 ON PM92 ON PM93 ON PM94 ON PM94 ON	fied data og value. N/AUTO ent of (A) s selected, h is deter- (A) (A) (A) (A) (A) (A) etting channels output is	4
<u>a</u>			MVLL MV lo Value outpu	ed. wer limit v higher th	value an set v	ariable is	
			MVHL MV hi Value outpu	gher limit lower tha	value an set va	ariable is	
			ΔMVL Rate o When previo exceed is set.	f MV chai the rate us MV Is set varia	nge limit of char to pres ble, spec	value nge from sent MV cified PM	
				CH1 CH2 CH3 CH4	PM101 PM102 PM103 PM104		
L		·					

Table 3.5 List of Instructions (Continued)

MELSEG-K

Table 3.5 List of Instructions (Continued)

3.2.3 List of instructions and used devices

Device Instruction	A	к	X	Y	Μ	т	С	D
NOP								
NOT			0	0	0			
AND				0	0			
OR			0	0	0			
SET			0	0	0	0 C	0 C	
RST			0	0	0	0 C	0 C	
END								
LDA		•	0	0	0	●G	●G	•
STA			0	0	0	●G	• G	•
+		•				●G	●G	•
·	1	•				●G	●G	
\		•				●G	●G	•
1		•			-	●G	●G	•
	•							
÷		•	-			● G	• G	•
LOG	•							
ABS	•							
>		•				● G	● G	
<		•				• G	● G	•
		•				● G	●G	•
JC		0 <u>.</u>						
JMP		0						
HS		0				0 G	OG	0
LS		0				OG	OG	0
HLM		0						0
LLM		0						0

MELSEG-K

Table 3.6 List of Instructions and Used Devices

Note 1: ○ mark and ● mark in the table indicate usable devices; ○ marks for logical processing and ● mark for data processing.

2: C next to the aforementiones marks indicate coil and G indicate temporary value.

Device Instruction			D .								
			к	X	Y	м	Т	С	D		
MOV		к	-	-	-	_		•	•		
	S	PX	_ `	0	0	0	· _	_	-		
		PY	_	0	0	0	_	_	_		
		PM	-	0	0	0	-	_	_		
		РТ	_	_	_	_	●G	●G	٠		
		PC	_ · ·	-	_	-	●G	●G	•		
		PD	_	-	-	_	•	•	٠		

MELSEG-K

Table 3.6 List of Instructions and Used Devices (Continued)

Note: ○ mark indicates logical processing and ● mark indicates data processing

	3.2.4	List of S	S and D) of PID	instruction
--	-------	-----------	---------	----------	-------------

	0	Device						
Instruction	Instruction Setting		PX	PY	PM	РТ	PC	PD
	Alarm set variable	•						
SAL	Alarm output range	٠						٠
	M where alarm is set				•			
	Alarm set variable	•		-				٠
HAL	Hysteresis variable	•						•
	M where alarm is set				•			
	Alarm set variable	•						•
LAL	Hysteresis variable	٠						٠
	M where alarm is set				•			
	Input device setting (K1 \sim K4)	٠						
	Filter coefficient α (0.00 \sim 1.00)	•						•
ΡΙΧ	Rate of PV change limit value $\Delta PVL(\%)$ (0.00 ~ 100.00)	•						•
	Input mode setting (K0 (voltage) or K1 (current))	•		-				
	Output device setting (K1 ~ K4)	•						
DIV	MV lower limit value MVL % (0.00 \sim 100.00)	•					-	•
FIT	MV higher limit value MVHL % (0.00~100.00)	•						•
	Rate of MV change limit value Δ MVL % (0.00 ~ 100.00)	٠						•
	Operation expression (K1 \sim K8)	٠						
	Set variable SV(%) (0.00 \sim 100.00)	•						•
	Proportional constant Kp (0.00 ~ 100.00)	•						•
PID	Integration constant Ti (second) (0.000 ~ 32700.00)	•						•
	Differentiation constant TD (second) (0.00 ~ 255.00)	•						•
	Dead band G (%) (0.00 ~ 100.00)	•						•

Table 3.7 List of S and D of PID Instruction

3.2.5 Program memory map

The relation between the number of programs and the program capacity is as shown in the figure below. The maximum usable number of programs is 4 and the run (scan time) of each program can be set in the range of 0.01 and 99.99 seconds in units of 0.01 sec.

The allocation of program number is automatically made when the program trigger factor is set. (For the setting of program trigger factor, see Section 6 of the Instruction Manual for KD81HP.)

MELSEG-K

3.3 Specifications of Connector for External Connection of KD81

Item	Specifications							
		1A	1B	1)				
	Channel 3	2A	2B	_ Channel 4				
		34	38					
	Channel 1	40		Analog output Channel 2				
<u>.</u>			40	-{				
	(Common) Analog input	5A	58	Analog input (Current				
n an	Channel 3 (Current input)	6A	6B	Channel 4 input)				
	(Voltage input)	7A	7B					
	(Common)	8A	8B	(Common)				
	Channel 1	9A	9B	Channel 2 input)				
• •	(Voltage input)	10A	10B	(Voltage input)				
	(SD).	11A	11B	(SD)				
	(COMMON +)	12A	12B	(COMMON –)				
Pin arrangement	Digital output	13A	13B	(Transistor output)				
· ·	(Transistor output)	14A	14B					
		15A	15B	(Empty)				
		16Δ	168					
	(Emoty)	17.0	170	- (Empty)				
	(Empty)	10.0	170	- (Empty)				
	(Empty)	18A	188					
		19A	19B	-11				
	Counter input	20A	20A	Counter input				
	19A, 21A, 23A12/24VDC	21A	21B	19B, 21B, 23B				
	20A, 22A, 24A5VDC	22A	22B	12/24VDC				
		23A	23B					
		24A	24B	20A, 22A, 24A5VDC				
·								
Connection cable size	0.6 mr	n or less dir	meter (solde	ring)				
Application		For extern	al wiring					
External dimensions (m)				· · · · · · · · · · · · · · · · · · ·				
Weight (Kg)								
weight (Kg)								

Table 3.8 Specifications of Connector for External Connection of KD81

- 27

MELSEG-K

3.4 Type KD81HP PID Programmer

Item	Specifications
Line voltage	5VDC (powered by KD81 via K70CBL)
Transmission system	Conforms to RS422.
Transmission speed	4.8 KBPS
Current consumption	Maximum 0.7 A
Display	Full-dot matrix system by means of liquid crystal Display of 16 char- acters horizontally and 13 characters vertically
Effective display area	77 x 96 (dot dimensions: 0.55 x 0.55, dot distance: 0.05)
Operating section	Keyboard switches (60 keys)
Key operation check	Buzzer
Dimensions	(9.84") 250 (height) x (6.3") 160 (width) x (1.7") 43 (depth) mm
Weight	1.1 kg (2.4 lbs.)

Table 3.9 KD81HP Specifications

3.5 Type K70CBL Connection Cable (Standard for KD81HP)

Item	Specifications	
Connected units	KD81 and KD81HP	
Length	2 m (7 ft)	
Weight	0.27 kg (6 lbs)	

Table 3.10 K70CBL Specifications

4. I	HANDLING	29 ~ 40
4.1	Controls and Explanations	30
	4.1.1 KD81 panel	30
	4.1.2 Interior of KD81	31
	4.1.3 Adjustments of volumes	32
	4.1.4 Adjusting procedures of volumes	33
4.2	External Wiring	35
	4.2.1 Analog input pin arrangement and external wiring method	35
	4.2.2 Analog output pin arrangement and external wiring method	36
	4.2.3 Counter input pin arrangement and external wiring mehtod	37
	4.2.4 Digital output pin arrangement and external wiring method	38
	4.2.5 Wiring Noise Considerations	39

4. HANDLING

4.1 Controls and Explanations

4.1.1 KD81 panel

MELSEG-K

CAUTION

Since volumes are factory-set, do not adjust them unless required. Especially, the potentiometers with * marks should never be moved.

4.1.2 Interior of KD81

MELSEG-K

CAUTION

Since volumes are factory-set, do not adjust them unless required. Especially, the potentiometers with * marks should never be moved.

4.1.3 Adjustments of volumes

Channel	adjustment
CH1	VR1 (AD1 GAIN)
CH2	VR2 (AD2 GAIN)
СНЗ	VR3 (AD3 GAIN)
CH4	VR4 (AD4 GAIN)

Adjustment volume

Channel	Zero adjustment
CH1	VR5
CH2	VR7
СНЗ	VR9
CH4	VR11

Adjustment volume				
Channel	Gain			
Charmer	adjustment			
	VR1			
CH1	(AD2 GAIN			
	VR2			
	(AD2 GAIN)			
0112	VR3			
CH3	(AD3 GAIN)			
0114	VR4			
	(AD4 GAIN)			

Channel	Zero adjustment
CH1	VR5
CH2	VR7
СНЗ	VR9
CH4	VR11

Adjustment volume

Channel	Gain adjustment		
011	VR13		
CHI	(DA1 GAIN V)		
CHO	VR15		
012	(DA2 GAIN V)		
СНЗ	VR21		
0113	(DA3 GAIN V)		
СЦА	VR23		
684	(DA4 GAIN V)		

Channel	Zero adjustment
CH1	VR18
CH2	VR20
СНЗ	VR28
CH4	VR26

Adjustment volume

Channel	Gain adjustment		
0114	VR14		
CHI	(DA1 GAIN I)		
	VR16		
CH2	(DA2 GAIN I)		
СНЗ	VR22		
	(DA3 GAIN I)		
CLIA	VR24		
	(DA4 GAIN I)		

Channel	Zero adjustment
CH1	VR17
CH2	VR19
СНЗ	VR27
CH4	VR25

4.1.4 Adjusting procedures of volumes

All potentiometers have been factory-set. However, when adjustment is required, follow the procedures described below:

(1) Analog input

Voltage input

- 1) Load Type KD81 control unit into the rightmost slot of basic base unit and unload I/O units from other slots. (This is to provide space for adjusting the pots, which are located on the internal circuit board, with an adjusting screwdriver.)
- 2) Write the following program list to KD81 by KD81HP.

Step No	•		
0	PIX	К 1	Indicates analog input channel "1". When channel 2 i
1		к 0	selected, write "K2". When channel 3, write "K3".
2		K 100	when channel 4, write "K4".
3		к 0	
4	STA	D001	write "K1".
5	END		

- 3) Run KD81 and monitor the content of (P)D001 by KD81HP.
- 4) Apply analog input 0 V to channel 1 of KD81.
- 5) Adjust the zero adjust pot VR5 until the content of (P) D001 reads "0".
- 6) Apply analog input 5 V.
- 7) Adjust the gain adjust pot VR1 until the content of (P) D001 reads "100".
 (When the gain adjust pot is moved, ripple occurs at the input operating amplifier output.
 (Therefore, adjust the ripple adjust pot until ripple reads 0 (mV or mA).
 (Monitor the content of D001 and adjust until the variation of reading is minimized.
- 8) Likewise, make adjustments for channels 2 to 4.

Current input

- 1) After proceeding with the aforementioned steps 1) \sim 3), apply analog input 4 mA to channel 1 of KD81.
- 2) Make adjustment following the aforementioned step 5.
- 3) Apply analog input 20 mA.
- 4) Make adjustment following the aforementioned steps 7 and 8.

(2) Analog output

Voltage output

 Load Type KD81 control unit into the rightmost slot of basic base unit and unload I/O units from other slots.

This is to provide space for adjusting the potentiometers, which are located on the internal circuit board, with an adjusting screwdriver.

2) Write the following program list to KD81 by KD81HP.

:	Step No) .			
0		SET	ΡM	91	
	1	LDA	к	0	
	2	PIY	κ	1	
	3		κ	0	
	4		κ	100	
	5		ĸ	100	
	6	END		an an taise	

Indicates 0%. When 100% is selected, write "K100".
 Indicates analog output channel "1". When channel 2 is selected, write "K2". When channel 3, write "K3". When channel 4, write "K4".

- 3) Connect a voltmeter to the analog output channel 1 of KD81.
- 4) Insert short-circuit chips into two locations "V" of channel 1 voltage/current output select pin.
- 5) Run KD81.
- 6) Adjust the zero adjust pot VR18 until voltage output of 0V is provided when LDA K 0 is written to step 1.
- 7) Adjust the gain adjust pot VR13 until voltage output of 5V is provided when LDA K 100 is written to step 1.
- 8) Likewise, make adjustments for other channels.

Current output

- 1) After proceeding with the aforementioned steps 1 and 2, connect an ammeter instead of the voltmeter used in the aforementioned step 3.
- 2) Insert short-circuit chips into two locations of "I" of channel 1 voltage/current output select pin.
- 3) Run KD81.
- 4) Adjust the bias adjust pot VR17 until current output of 4 mA is provided when LDA K0 is written to step 1.
- Adjust the gain adjust pot VR13 until current output of 20 mA is provided when LDA K 100 is written to step 1.
- 6) Likewise, make adjustments for other channels.

MELSEC-K

4.2 External Wiring

4.2.1 Analog input pin arrangement and external wiring method

4.2.2 Analog output pin arrangement and external wiring method

4.2.4 Digital output pin arrangement and external wiring method

MELSEG-K

4.2.5 Wiring noise considerations

External wiring with I/O equipment should be executed so that the wiring is not adversely affected by noise. The following description explains general cautions.

- (1) Cables for AC and DC I/O signal lines should be separated in order to protect them from AC side surge and induction.
- (2) Do not wire I/O signal lines with the main circuit cables, high-power cables, and load cables from other than the programmable controller. Also do not wire them in proximity to the aforementioned cables.
- (3) When conduits or ducts are used, securely ground them.

MEMO

		••••••
		•
	•••••	
••••••		,
	• • • • • • • • • • • • • • • • • • • •	
	••••••	
•••••••••••••••••••••••••••••••••••••••		
	· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••
	· · · · · · · · · · · · · · · · · · ·	
	•	
		•••••••••••••••••••••••••••••••••••••••
		••••••
••••		•••••••••••••••••••••••••••••••••••••••
	10	

5.	PROGRAMMING	~ 74
5.1	I Device Names	42
5.2	2 Data Range	43
5.3	B Explanation of Instructions	44
	5.3.1 Logical instructions	44
	5.3.2 Transfer instructions	46
	5.3.3 Arithmetic operation instructions	48
	5.3.4 Comparison instructions	52
	5.3.5 Brach instructions	54
	5.3.6 Special instructions	55
	5.3.7 PID instructions	61
5.4	Communication with Programmable Controller	65
	5.4.1 I/O signal and allacation	65
	5.4.2 Communication with programmable controller	66
	5.4.3 Write from programmable controller of KD81	67
	5.4.4 Read from KD81	71

5. PROGRAMMING

5.1 Device Names

The names of devices used for KD81 are provided with "P" to differentiate them from devices used for programmable controller. (However, devices displayed by the KD81HP are not provided with "P" because of the number of display columns.)

MELSEG-K

For programming and other descriptions, it is recommended to describe device names with "P" provided in order to differentiate the devices.

Description	Davies Name of KD01	Device Name of	Device Name Displayed on KD81HP	
Description		Programmable Controller	Key	Display
Input	PX	X	PX	х
Output	PY	Y	PY	Y
Temporary memory	РМ	M	PM	м
Timer	РТ	т	РТ	Т
Counter	PC	C	PC	С
Data register	PD	D	PD	D
Constant	К	к	к	к

Table 5.1 Device Representations

5.2 Data Range

$\left[\right]$	Description	Device Number	Data Range Processed by KD81	Data Ran	ge of KD81HP and KCPU
	Times tomorrow volue	PT0~15	-32768 ~ +32767 (x 10ms)	-3276	68 ~ +32767 (x 10ms)
Ľ	Timer temporary value	PT16~31	-32768 ~ +32767 (x 100ms)	32768 ~ +32767 (x 100ms)	
2	Counter temporary value	PC0 ~ 3	-32768 ~ +32767	-32768 ~ +32767	
		DD1 - 107	+2.7	KD81HP	Monitor range ±9.999x10° ~±9.999x10°
3	3 Data register PD1 ~ 127 $\pm 2.7 \times 10^{10} \sim \pm 9.2 \times 10^{10}$	KCPU	Communication range -32768 ~ +32767		

Table 5.2 Data Range

(1) Timer and counter

When the temporary value of timer or counter exceeds +32767, counting is continued like $-32768, -32767, \dots, -1, 0$.

(2) Data register

The data register comprises 32 bits of floating points. When the value of data register exceeds the range of $\pm 2.7 \times 10^{20} \sim \pm 9.2 \times 10^{18}$ by arithmetic operation, the KD81 detects an operation error (overflow or underflow) and comes to stop. At this time, the RUN indicator light flickers.

When the data processing ranges of KD81HP and KCPU are exceeded, data processing is fixed at the following values.

KD04110	When value is less than $-9.999 \times 10^{\pm 9}$	-9.999 × 10 ^{±9}
KD8THP	When value exceeds 9.999 x $10^{\pm 9}$	9.999 × 10 ^{± 9}
KODU	When value is -32768	-32768
КСРО	When value exceeds 32767	32767

(3) Constant

The range of constant which can be input from the KD81HP is as follows.

 $-99990 \sim 999900$ (Up to five digits below a decimal point is possible)

5.3 Explanation of Instructions

5.3.1 Logical instructions

(1) NOT ----- Inverse

Functional expression: (A) \leftarrow (Device)

The content of specified device is inverted and stored into accumulator (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processed
Logical Processing	PX, PY, PM

5

Coding

Step Number	Instruction	Device Number
123	NOT	PMO.

(2) AND ----- Logical product

Functional expression: (A) \leftarrow (A) \land (Device)

The AND operation of specified device content and (A) content is executed and the result is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processed
Logical Processing	PX, PY, PM

Coding

Step Number	Instruction	Device Number
123	AND	PX1

(3) OR ----- Logical add

Functional expression: (A) \leftarrow (A) V (Device)

The OR operation of specified device content and (A) content is executed and the result is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processed
Logical Processing	PX, PY, PM

Coding

Step Number	Instruction	Device Number
123	OR	PY2

(4) SET ----- Set

Functional expression: (Device) ~ 1

Specified device is turned on.

CAUTION

SET instructions for PCO and PC1 are inactive.

Type of Processing	Device Which Can Be Processed	
Logical Processing	PX, PY, PM, PC, PY	

PC and PT are coils.

MELSEG-K

<u> </u>	•
1.CYC	IIIIII
000	

Step Number	Instruction	Device Number
123	SET	PM10

(5) RST ----- Reset

Functional expression: (Device) $\leftarrow 0$

Specified device is turned off.

Type of Processing	Device Which Can Be Processed
Logical Processing	PX, PY, PM, PC, PT

PC and PT are coils.

CAUTION

RST instructions for PCO and PC1 are inactive.

Coding		
Step Number	Instruction	Device Number
123	RST	РТО

5.3.2 Transfer instructions

(1) STA ----- Storage

Functional expression: (Device) ← (A)

The content of (A) is stored into specified device.

CAUTION

1. Avoid mingling logical processing and data processing.

Example:

LDA PX1 --- Logical processing STA PD10 -- Data processing

2. STA instructions for PC0 and PC1 are inactive.

Type of Processing	Device Which Can Be Processed
Logical Processing	PX, PY, PM
Data Processing	PD, PC, PT

PC and PT are temporary values.

Coding

Step Number	Instruction	Device Number
123	STA	PD10

(2) LDA ----- Read

Functional expression: (A) \leftarrow (Device)

The content of specified device is read to (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processed
Logical Processing	PX, PY, PM
Data Processing	PD, PC, PT, K

PC and PT are temoporary values.

Coding		
Step Number	Instruction	Device Number
123	LDA	K10

(3) MOV ----- Transfer

Functional expression: $S \rightarrow D$

S: Source

S indicates the source from which data is transferred.

D: Destination

D indicates the destination where the conntent of S is stored.

This is a data transfer instruction between devices and transfers data from S to D. The content of S remains unchanged after the execution of the instruction.

CAUTION

MOV instructions for PC0 and PC1 are inactive (when D = PC0, PC1).

Combination of devices which can be processed

mark indicates logical processing.
 mark indicates data processing.
 C and T indicate temporary value.

Coding

Step Number	Instruction	Device Number
123	MOV	K100
124		PD1

5.3.3 Arithmetic operation instructions

(1) +----- Add

Functional expression: (A) \leftarrow (A) + (Device)

The content of specified device and that of (A) are added and the result is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	⁷ Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values.

Coding

Step Number	Instruction	Device Number
123	+	PD1

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow

Note: For details of errors, see Section 6 "ERROR MESSAGE LIST".

(2) ------Subtract

Functional expression: (A) \leftarrow (A) – (Device)

The content of specified device is subtracted from that of (A) and the result is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values.

Coding		
Step Number	Instruction	Device Number
123		K100

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow

Note:

For details of errors, see Section 6 "ERROR MESSAGE LIST".

(3) *----- Multiply

Functional expression: (A) \leftarrow (A) x (Device)

The content of (A) and that of specified device are multiplied and the result is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values.

MELSEG-K

Coding

Step Number	Instruction	Device Number
123	*	K20

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow

Note: For details of errors, see Section 6 "ERROR MESSAGE LIST".

(4) /----- Divide

Functional expression: (A) \leftarrow (A) \div (Device)

The content of (A) is divided by that of specified device and the result is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values.

Coding

Step Number	Instruction	Device Number
123	1	PD10

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow
04	Division by 0

Note: For details of errors, see Section 6 "ERROR MESSAGE LIST".

(5) $\sqrt{}$ ----- Square root

Functional expression: (A) $\leftarrow \sqrt{(A)}$

The extraction of $\sqrt{(A)}$ is executed and the result is stored into (A).

Type of Processing	Device Which Can Be Processing
Data Processing	A

Coding

Step Number	Instruction	Device Number
10	<i>√</i> _	

Arithmetic Operation Error

Error Code	Content
03	Square root of negative number

Note: For details of errors, see Section 6 "ERROR MESSAGE LIST".

(6) PCT -----% operation

Functional expression: $(A) \leftarrow {(A)/(Device)} \times 100$

The percentage of (A) to specified register is obtained and the result is stored into (A). The content of specified register remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing	
Data Processing	PD, PC, PT, K	

PC and PT temporary values.

Coding			
Step Number	Device Number		
123	PCT PD10		

Arithmetic Operation Error

Error Code	Content	
01	Overflow	
02	Underflow	
04	Division by 0	

Note:

: For details of errors, see Section 6 "ERROR MESSAGE LIST".

(7) LOG -----Common logarithm

Functional expression: (A) $\leftarrow \log_{10}(A)$

The common logarithm of (A) is obtained and the result is stored into (A).

Type of Processing	Device Which Can Be Processing	
Data Processing	А	

MELSEC-K

Coding

Step Number	Instruction	Device Number
123	LOG	

Arithmetic Operation Error

Error	Content
03	Logarithmic calculation of 0 or negative number

Note: For details of errors, see Section 6 "ERROR MESSAGE LIST".

(8) ABS ----- Absolute value

Functional expression: $(A) \leftarrow |(A)|$

The absolute value of (A) is obtained and the result is stored into (A).

Type of Processing	Device Which Can Be Processing	
Data Processing	А	

Coding

Step Number	Instruction	Device Number
123	ABS	

5.3.4 Comparison instructions

(1) > -----Comparison

Functional expression:

When (A)>(Device), the next step is run. When (A) \leq (Device), "the next step + 1" is run.

The content of (A) and that of specified device are compared. When (A)>(Device), the next program step is run. When (A) \leq (Device), "the next program step +1 step" is run. The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing	
Data Processing	PD, PC, PT, K	

PC and PT temporary values.

Coding

Step Number	Instruction	Device Number
123	>	K100

(2) < -----Comparison

Functional expression:

When $(A) \leq (Device)$, the next step is run. When $(A) \geq (Device)$, "the next step + 1" is run.

The content of (A) and that of specified device are compared. When (A) < (Device), the next program step is run. When $(A) \ge (Device)$, "the next program step +1 step" is run. The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing	
Data Processing	PD, PC, PT, K	

PC and PT temporary values.

~	-	-
LOO	n	a
	•••	J

Step Number	Instruction	Device Number
123	<	PD10

(3) = ----- Comparison

Function

Functional expression:

When (A) = (Device), the next step is run. When (A) \neq (Device), "the next step + 1" is run.

The content of (A) and that of specified device are compared. When (A) = (Device), the next program step is run. When (A) \neq (Device), "the next program step +1 step" is run. The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing	
Data Processing	PD, PC, PT, K	

PC and PT temporary values.

MELSEG-K

Coding

Step Number	Instruction	Device Number
123	=	PT1

5.3.5 Branch instructions

(1) JMP ---- Unconditional jump

This is an unconditional jump instruction and causes the program to jump to the specified program step.

Type of Processing	Device Which Cab Be Processing
	K

MELSEG-K

Coding

Step Number	Instruction	Device Number
123	JMP	K50

(2) JC ----- Conditional jump

Functional expression:

When (A) = 1, program jumps to specified step.

When (A) = 0, the next step is run.

This is a conditional jump instruction. When (A) = 1, the program jumps to the specified program step. When (A) = 0, the next program step is run.

Note: Avoid mingling logical processing and data processing.

Example;

LDA K1 ----- Logical processing JC K15 ---- Data processing

Type of Processing	Device Which Can Be Processing
Data Processing	ĸ

Coding

Step Number	Instruction	Device Number
123	JC	K120

(1) HS ----- Magnitude comparison

Functional expression:

When (A) \geq (Device), (A) \rightarrow (A). When (A) < (Device), (Device) \rightarrow (A)

The content of specified device and that of (A) are compared, and the content with higher value is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values.

MELSEG-K

Coding		
Step Number	Instruction	Device Number
123	HS	PD1

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow

Note: For details of errors, see Section 6 "ERROR MESSAGE LIST".

(2) LS ----- Magnitude comparison

Functional expression:

When (A) \leq (Device), (A) \rightarrow (A). When (A) > (Device), (Device) \rightarrow (A)

The content of specified device and that of (A) are compared, and the content with lower value is stored into (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing
Data Processing	PD, PC, PT, K

PC and PT temporary values.

Coding		
Step Number	Instruction	Device Number
123	LS	K100

Arithmetic Operation Error

Error Code	Content	
01	Overflow	
02	Underflow	

Note:

: For details of errors, see Section 6 "ERROR MESSAGE LIST".

(3) HLM -- Clamping of higher limit value

Functional expression: When (A) > (Device), $(Device) \rightarrow (A)$.

The content of specified device and that of (A) are compared. When the content of (A) is higher than that of device, the content of device is stored into (A) and gives restriction to (A). The content of specified device remains unchanged after the execution of the instruction.

(A)	· · ·	
	(A)	Content of specified device

Type of Processing	Device Which Can Be Processing
Data Processing	PD, K

Coding	0	Co	di	n	q
--------	---	----	----	---	---

Step Number	Instruction	Device Number
123	HLM	PD100

Arithmetic Operation Error

Error Code	Content	
01	Overflow	
02	Underflow	

Note:

For details of errors, see Section 6 "ERROR MESSAGE LIST".

(4) LLM --- Clamping of lower limit value

(A)

Functional expression: When (A) < (Device), (Device) \rightarrow (A).

The content of specified device and that of (A) are compared. When the content of (A) is lower than that of device, the content of device is stored into (A) and gives restriction to (A). The content of specified device remains unchanged after the execution of the instruction.

Type of Processing	Device Which Can Be Processing	
Data Processing	PD, K	

Cod	i	n	a
COU	l		ч

Step Number Instruction		Device Number	
123	LLM	K10	

Arithmetic Operation Error

Error Code	Content
01	Overflow
02	Underflow

Note:

Content of specified device

For details of errors, see Section 6 "ERROR MESSAGE LIST".

(5) NOP --- No operation

This is a no-operation instruction and has no influence on the results of preceding arithmetic operation. NOP is used when providing space for debugging of program, when it is desired to make deletion without changing the number of programs (write NOP to the corresponding step of prewritten program), or when temporarily deleting a condition. MELSEC-K

(6) END --- End of program

This is a program end instruction and is used to declare the end of program.

(7) HAL (High alarm)

When the content of (A) becomes higher than the alarm set variable (AP), alarm (specified PM) is turned on. The output alarm turns off at the hysteresis variable (HS).

EG-K

Symbol

AP: Alarm set value HS: Hysteresis value

Coding

Step Number	Instruction	Device Number
123	HAL	K100
124		K20
125		PM10

←	Alarm	set	value	(AP)
←	Hyster	esis	value	(HS)

← Alarm output (ALARM)

Details of Parameter Settings

Parameter	Setting	Device Which Can Be Processed
Alarm set variable (AP)	Alarm ON point is set.	PD, K
Hysteresis variable (HS)	Hysteresis variable is set.	PD, K
Alarm output (ALARM)	PM number, which provides alarm output, is set.	РМ

(8) LAL (Low alarm)

When the content of (A) becomes lower than the alarm set variable (AP), alarm (specified PM) is turned on. The output alarm turns off at the hysteresis variable (HS).

Coding

Step Number	Instruction	Device Number
123	LAL	PD10
124		PD11
125		PM51

~	Alarm	set	value	(AP)	

← Hysteresis value (HS)

← Alarm output (ALARM)

Details of Parameter Settings

Parameter Setting		Device Which Can Be Processed
Alarm set variable (AP)	Alarm ON point is set.	PD, K
Hysteresis variable (HS)	Hysteresis variable is set.	PD, K
Alarm output (ALARM)	PM number, which provides alarm output, is set.	РМ

MELSEG-K

(9) SAL (Set alarm)

When the content of (A) is within the alarm set value (AP) plus output range (AO), alrm (specified PM) is turned on.

MELSEG-K

Symbol

AP : Alarm set value AO : Alarm output range

Coding

Step Number	Instruction	Device Number	
123	SAL	PD15	
124		K50	
125		РМ30	

		•	•
← Alarm	output	range	(AO)
← Alarm	output	(ALA	RM)

← Alarm set value (AP)

Details of Parameter Settings

Parameter	Setting	Device Which Can Be Processed
Alarm set variable (AP)	Alarm ON point is set.	PD, K
Alarm output range (AO)	Alarm output range is set.	PD, K
Alarm output (ALARM)	PM number, which provides alarm output, is set.	РМ

5.3.7 PID instructions

(1) PIX

Analog input signal of process is converted into digital value and stored into specified data register.

MELSEC-K

Symbol

1

Coding

Step Number	Instruction	Device Number
123	PIX	К1
124		PD2
125		PD3
126		КО

- ← A/D converter channel setting (CH)
- \leftarrow Filter coefficient (α)
- ← Rate of PV change limit value (Δ PVL)
- ← Input mode setting (I/V)

Details of Parameter Settings

Parameter	Setting	Setting Range	Device Which Can Be Processed
A/D converter channel setting (CH)	Set which of 4 channels of A/D converter is input.	1, 2, 3, 4	к
Filter coefficient (α)	The degree of filtering is set. As coefficient approaches zero, filter becomes inactive.	0~1	PD, K
Rate of PV change limit value (ΔPV L)	When the rate of change from previousPV to present PV exceeds this setvariable, specified PM is set. (Once set,the PM does not turn off until reset.)CH1PM81CH2PM82CH3PM83CH4PM84	0~100 (%)	PD, K
Input mode setting (I/V)	Current mode or voltage mode is set.When current mode is set, $4 \sim 20$ mAis converted into $0 \sim 100\%$. Whenvoltage mode is set, $0 \sim 5$ V is converted into $0 \sim 100\%$. Converted analogvalue is stored into (A) and also intothe next data register.CH1PD101CH2PD102CH3PD103CH4PD104	Current input: 1 Voltage input: 0	К

(2) PIY

The digital value of (A) or specified register is converted into analog value. When the AUTO position of MAN/AUTO select switch is selected, the content of (A) is output. When the MAN position is selected, the content of data register, which is determined by the channel, is output.

MELSEG-K

MAN/AUTO Position Selection

Channel	MAN Position		AUTO Position	
	Select Signal	Output Value	Select Signal	Output Value
CH1	PM91 off	PD101	PM91 on	(A)
CH2	PM92 off	PD102	PM92 on	(A)
СНЗ	PM93 off	PD103	PM93 on	(A)
CH4	PM94 off	PD104	PM94 on	(A)

Coding

Step Number	Instruction	Device Number	
25	ΡΙΥ	К2	
26		PD5	
27		PD6	
28		PD7	

← D/A converter channel setting (CH)

← MV lower limit value (MVLL)

← MV higher limit value (MVHL)

← Rate of MV change limit value (△MVL)

Details of Parameter Settings

Parameter	Setting	Setting Range	Device Which Can Be Processed
D/A converter channel setting (CH)	Specify to which of 4 channels of D/A converter the output is provided.	1, 2, 3, 4	к
MV lower limit value (MVLL)	Value higher than set variable is output.	0~100 (%)	PD, K
MV higher limit value (MVHL)	Value lower than set variable is output.	0~100 (%)	PD, K
Rate of PV change limit value (∆MVL)	When the rate of change from previousPV to present PV exceeds this setvariable, specified PM is set.CH1PM101CH2PM102CH3PM103CH4PM104	0~100 (%)	к

CAUTION

1. Manual selection: MV lower limit (MVLL) and MV higher limit (MVHL) become inactive. However, MV output value is output in the range of $0 \le MV \le 100$. 2. MVLL \le MVHL is the requirement for MV lower limit (MVLL) and MV higher limit (MVHL).

LSEG-K

ME

(3) PID

PID operation is executed by use of SV and PV and the result is stored into (A).

Step Number	Instruction	Device Number
123	PID	K1 -
124		PD51
125		К5
126		PD52
127		PD53
128		PD54

- ← Operation expression selection (FROM)
- ← Set variable (SV)

.

- ← Proportional constant (KP)
- ← Integration constant (TI)
- ← Differentiation constant (TD)
- ← Dead band (G)

Details of Parameter Settings

Parameter	Setting	Setting Range	Device Which Can Be Processed
Operation expression selection (FORM)	Select from the following operation expressions.(See the following pages for the explanation of operation expressions.)1. Basic velocity type normal action 2. Basic velocity type reverse action 3. Basic positional normal action 4. Basic positional reverse action 5. Error square velocity type normal action6. Error square velocity type reverse 		K
Set variable (SV)	Set variable is set.	0~100%	PD, K
Proportional constant (KP)	Proportional constant is set.	0~100%	PD, K
Integration constant (TI)	Integration constant is set.	$0\sim 32700~{ m sec}$	PD, K
Differentiation constant (TD)	Differentiation constant is set.	0 ~ 255 sec	PD, K
Dead band (G)	Dead band is set.	0~100%	PD, K

PID Operation Expressions

FROM	NAME	OPERATION EXPRESSION	
К1	Basic velocity type	EVn = PVn — SVn	SVn Set variable
	normal run Basie Flow	$\Delta MV = K_P \left\{ (EVn - EVn-1) + \frac{Ts}{T_1} EVn - \frac{Tc}{Ts} (2PVn-1 - PVn - PVn-2) \right\}$ $MVn = \Sigma \Delta MV$	 PVn Process variable at present sampling PVn-1Process variable 1 period prior to proceed campling
К2	Basic velocity type reverse run Basic Flow	$EVn = SVn - PVn$ $\Delta MV = KP \left\{ (EVn - EVn-1) + \frac{Ts}{T_1} EVn + \frac{TD}{Ts} (2PVn-1 - PVn - PVn_2) \right\}$ $MVn = \Sigma \Delta MV$	 PVn-2Process variable 2 periods prior to present sampling ΔMV Rate of output change MVn Output variable
КЗ	Basic positional normal run	EVn = PVn – SVn MVn = KPEVn + $\frac{Ts}{T_1}\Sigma$ EV + $\frac{TD}{Ts}$ (EVn – EVn.1)	EVn Error at present sampling EVn-1Error 1 period prior to present sampling
К4	Basic positional reverse run	EVn = SVn – PVn MVn = KPEVn + $\frac{Ts}{T_I} \Sigma EV + \frac{TD}{Ts} (EVn - EVn-1)$	Ts Sampling period TI Integration constant TD Differentiation constant
К5	Error square velacity type normal run	EVn = PVn - SVn $\Delta MV = KP \{EVn \times EVn - EVn \cdot 1 \times EVn \cdot 1 $ $+ \frac{Ts}{T_1} \times EVn \times EVn $	
		$-\frac{T_{D}}{T_{s}} (2PVn-1 - PVn - PVn-2) \}$ $MVn = \Sigma \Delta MV$	
К6	Error square velocity type reverse run	$EVn = SVn - PVn$ $\Delta MV = K_P \{EVn \times EVn - EVn - 1 \times EVn - 1 $ $+ \frac{T_S}{T_1} \times EVn \times EVn $ $+ \frac{T_D}{T_S} (2PVn - 1 - PVn - PVn - 2)\}$ $MVn = \Sigma \Delta MV$	
K7	Error wquare positional normal run	$EVn = PVn - SVn$ $MVn = KPEVn \times EVn + \frac{Ts}{T_1} \Sigma EV \times EV $ $+ \frac{TD}{Ts} (EVn \times EVn - EVn-1 \times EVn-1)$	
К8	Error square positional reverse run	$EVn=SVn-PVn$ $MVn = KPEVn \times EVn + \frac{Ts}{T_1} \Sigma EV \times EV $ $+ \frac{TD}{Ts} (EVn \times EVn - EVn-1 \times EVn-1)$	

- 64

MELSEC-K

5.4 Communication with Programmable Controller

5.4.1 I/O signals and allocation

I/O signals on the programmable controller side of KD81 are as follows. X and Y numbers apply when the KD81 is loaded into the slot number 1 of base unit.

Output Signal

Input Signal

Input Number Content **Output Number** Content PD data 2⁰ PD data 2⁰ X0 PM coil (MO) Y0 PM coil (MO) 2¹ ·· 21 X1 PM coil (M1) Y1 PM coil (M1) .,, 2² 2² PM coil (M2) X2 Y2 •• PM coil (M2) ,, 2³ 2³ Х3 PM coil (M3) **Y**3 ,, PM coil (M3) ., 2⁴ 2⁴ PM coil (M4) X4 Y4 ,, PM coil (M4) ,, 25 2⁵ X5 PM coil (M5) **Y5** ,, PM coil (M5) ., 2⁶ 2⁶ PM coil (M6) PM coil (M6) X6 ,, Y6 ., **2**⁷ PM coil (M7) 2^7 X7 •• Y7 " PM coil (M7) 2⁸ 2⁸ ,, X8 ,, PM coil (M8) **Y8** PM coil (M8) 2⁹ 2⁹ X9 ., PM coil (M9) Y9 PM coil (M9) ., 2¹⁰ 2¹⁰ PM coil (M10) XA .. YA PM coil (M10) ,, 2¹¹ 2^{11} XB PM coil (M11) PM coil (M11) ... YB 2¹² 2¹² XC PM coil (M12) YC PM coil (M12) 2¹³ 2¹³ PM coil (M13) XD ., YD PM coil (M13) 2^{1 4} 2¹⁴ XE ,, PM coil (M14) YE •• PM coil (M14) XF " SIGN ΥF PM coil (M15) " SIGN PM coil (M15) X10 KD81 output PY0 Y10 KD81 input PX0 X11 PY1 Y11 PX1 ,, ,, X12 PY2 Y12 PX2 ,, ,, X13 PY3 Y13 PX3 ., ., X14 PY4 Y14 PX4 ,, ,, X15 PX5 PY5 Y15 ,, ,, X16 PY6 Y16 ,, PX6 ., X17 PY7 Y17 •• PX7 .. PD number setting 2⁰ X18 PY8 Y18 ,, X19 PY9 PD number setting 2¹ ,, Y19 X1A **PY10** PD number setting 2² Y1A .. PD number setting 2³ **PY11** X1B ,, Y1B X1C KD81 ready Y1C PD number setting 2⁴ X1D Not used Y1D Programmable controller ready X1E Write completed Y1E Write X1F **Read completed** Y1F Read

Note: indicates that the signal is effective at its rise.

5.4.2 Communication with Programmable Controller

The programs for communication with programmable controller can be classified as shown below:

- (1) Write to input (PX) of KD81
- (2) Write to data register (PD) of KD81
- (3) Write to temporary memory (PM) of KD81
- (4) Read from output (PY) of KD81
- (5) Read from data register (PD) of KD81
- (6) Read from temporary memory (PM) of KD81

Since communication of the KD81 with the programmable controller is made by a handshaking system, the aforementioned communication programs (2), (3), (5) and (6) cannot be run at the same time. Therefore, be sure to perform programming by providing interlock so that the programs are run alternately.

(1) Write to PX

1) By outputting corresponding Y numbers (Y10 \sim 17) of programmable controller to PX of KD81, PX can be turned on and off.

MELSEG-K

2) Program example of write to PX

(2) Write to PD

- 1) Write procedure
 - a. Set written data to Y0 \sim YF.
 - b. Set PD numbers, which are desired to be written, to $Y18 \sim Y1C$.
 - c. After completing a. and b. above, turn on the write command Y1E.

Turn off Y1E by leading edge of write completion signal (X1E). (Write completion signal X1E is automatically turned off by trailing edge of Y1E.)

2) Write timing

3) Program example of write to PD

Fig. 5.1 shows a program example for writing data registers $D11 \sim 25$ to $PD1 \sim 15$. Data write start condition

Fig. 5.1 Program Example for Write to PD

(3) Write to PM

Write to PM is a batch write of 16 points, PM0 \sim PM15. Therefore, prepare 16 Ms in serial order, which correspond to PM0 \sim PM15, on programmable controller side and write data by use of these Ms.

SEG-K

a. Set written data of PM0 \sim PM15 to Y0 \sim YF.

- b. Set all of Y18 \sim Y1C to "0".
- c. After completing the a. and b. above, turn on the write command Y1E.

Turn off Y1E by leading edge of write completion signal (X1E). (Write completion signal X1E is automatically turned off by trailing edge of Y1E.)

1) Write timing

Written data set	
All of Y18 \sim Y1C are reset to "0".	
Write (Y1E)	
Write completion (X1E)	

2) Program example of write to PM

Example:

Fig. 5.2 shows a program example for batch write of temporary memories M30 \sim 45 which correspond to PM0 \sim 15.

MELSEG-K

Table 5.2 Program Example for Write to PM

70-

5.4.4 Read from KD81

(1) Read of PY

- 1) By inputting X numbers (X10 \sim 1B) of programmable controller which correspond to PY of KD81, the content of PY can be read.
- 2) Program example for read of PY

(2) Read of PD

- 1) Read procedure
 - a. After setting read PD numbers to Y18 \sim Y1C, turn on the read command (Y1F).
 - b. KD81 reads the values indicated by PD numbers at the rise of read signal, and turns on the read completion signal (X1F).
 - c. After making sure that the read completion signal (X1F) is on, read data and turn off the read signal (Y1F).
 - d. KD81 turns off read completion signal (X1F) at the rise of read signal (Y1F).
- 2) Read timing

5. PROGRAMMING

3) Protram example of read of PD

Fig. 5.3 shows a program example for read of PD1 \sim 15 to D11 \sim 25.

MELSEG-K

Fig. 5.3 Program Example for Read of PD

5. PROGRAMMING

(3) Batch read of PM

Read of PM is a batch read of 16 points, PM0 \sim 15. Therefore, prepare 16 Ms in serial order, which correspond to PM0 \sim 15, on programmable controller side and read data by use of these Ms.

- 1) Read procedure
 - a. After setting all of Y18 \sim Y1C to "0", turn on the read command (Y1F).
 - b. At the rise of read signal, KD81 performs batch read of PMs and turns on the read completion signal (X1F).
 - c. After making sure that the read completion signal (X1F) is on, execute batch read of data from 16 Ms and turn off the read signal (Y1F).
 - d. At the rise of read signal (Y1F), KD81 turns off the read completion signal (X1F).

2) Read timing

All of Y18 \sim Y1C are reset to "0".

Read command (Y1F)

Batch reset of KD81 PMs

Read completion (X1F)

5. PROGRAMMING

3) Program example of read of PM

Fig. 5.4 shows a program example for batch read of PMO \sim 15 to M10 \sim 25.

MELSEG-K

Fig. 5.4 Program Example of Read of PD

6. ERROR MESSAGE LIST

6. ERROR MESSAGE LIST

.

. . . . 75 ~ 76

6. ERROR MESSAGE LIST

6. ERROR MESSAGE LIST

When the RUN indicator LED on the KD81 flickers, load Type KD81HP PID programmer into KD81 and press the TST K GO keys. Then, the screen shows the content of error as indicated in Table 6.1. Therefore, take a proper action according to the corrective action described in the table.

Error Screen Display Example	Error Content	Corrective Action	
ERROR TABLE	Error Code 01: Operation result has exceeded 9.2 x 10 ¹⁸ .	Correct user program so that operation result does not exceed 9.2 x 10 ¹⁸ .	
STEP 123 / D007	02: Operation result has exceeded -9.2 x 10 ¹⁸ .	Correct user program so that operation result does not exceed -9.2 x 10 ¹⁸ .	
ARITHMETICERR. CODE 04	03: Square root or logarithm of zero or negative number has been calculated.	Since the error is as mentioned at left, correct the program which has the dis- played step.	
Display Program number	04: Division has been done by zero.	Since the error is as mentioned at left, correct the program which has the dis- played step.	
Step number and its instruction Arithmetic operation error code	06: Due to hardware error, opera- tion time has exceeded specifi- ed value.	Since the error is due to hardware failure, change the KD81.	
ERROR TABLE PRG. 1 LOOPERROR Display Program number	Program is repeatedly run in a cer- tain range of user program and the END instruction is not executed, resulting in overtime.	Press TST RD 1 GO SSN 0 GO keys and then repeatedly press GO key to check the operation of program. Correct a faulty program.	
ERROR TABLE PRG. 1 STEP 115 SAL M009	Instruction code of program, which be being processed, has a code which cannot be decoded by KD81.	The program with the displayed step has an error. Correct the program.	
Display Program number Step number and its instruction			
NOERROR	When TST K GO keys are pressed while RUN indicator LED of KD81 is lit, the screen shown at left is displayed. While the LED is lit, do not perform the above operation.		

7. EXTERNAL DIMENSIONS OF KD81

7. EXTERNAL DIMENSIONS OF KD81 \ldots 77 \sim 78

7. EXTERNAL DIMENSIONS OF KD81

7. EXTERNAL DIMENSIONS OF KD81

MELSEG-K

78

8. C	AUTIONS FOR APPLICATION
8.1	Run during Instantaneous Stop
8.2	Run during Error
8.3	Run during KCPU "STOP"
8.4	Selection of Power Supply Unit

8. CAUTIONS FOR APPLICATION

8.1 Run during Instantaneous Stop

Resumption of operation of the KD81 will be automatic in the event that power loss occurs to the base unit of the PC for 20msec or longer and is then restored. If the KD81 is in the process of being shut down by use of the KD81HP and power is restored plus field conditions activate the program, the KD81 will operate. Caution should be exercised by the user for these reasons.

8.2 Run during Error

In the event that error occurs in any of the programs when plural programs (a maximum of four programs) are run, the other programs will stop and the "RUN" LED on KD81 will flicker. Since the KD81 ready signal (X1C) turns off in case of error, the KCPU can detect the error of KD81 by this signal. (For the output states at error detection, see Section 8.4.)

8.3 Run during KCPU STOP

When the "RUN" switch on KCPU is moved to STOP position during operation, the program of KD81 does not stop. Since the program of KD81 continues running and provides output, prepare a user program of KCPU so that the program turns off the programmable controller ready signal (Y1D).

KCPU user program example

When the programmable controller ready signal (Y1D) turns off, the digital output of KD81 turns off and the analog output of $4 \sim 20$ mA changes to 0 mA and $0 \sim 5$ V changes to 0 V.

8.4 Output State of KD81

Output	Output State at Error Detection	Output State of Stop Program	Output State at Program Stop	Output State at OFF of programmable Controller Ready Signal
RY0~11	OFF	Remain the same.	Remain the same.	Operate during pro- gram run.
Digital output RY12 ~ 15	OFF	Remain the same	OFF	OFF
Analog output	0 ~ 5V changes to 0V and 4 ~ 20mA changes to 0mA.	Held at the present state. If left at this state, output reduces 5V in four hours.	0 ~ 5V changes to 0V and 4 ~ 20mA changes to 0mA.	0 ~ 5V changes to 0V and 4 ~ 20mA changes to 0mA.

CAUTION

When the analog output circuit element is damaged, analog output becomes unstable.

8.5 Caution for System Design

For safety and protection of the control system and also from a fail safe aspect, circuits which will result in machine damage or accident due to erroneous operation (such as an emergency stop circuit, a protection circuit, and an interlock circuit) should be located in the exterior of the programmable controller.

8.6 Instruction Processing

Avoid mingling a logical processing instruction and a data processing instruction. (Especially when a data processing instruction is executed after the execution of a logical processing instruction or when a logical processing instruction is executed after the execution of a data processing instruction)

1. Example of executing a data processing instruction after the execution of a logical processing instruction

Step number

123	LDA	PX1 (Logical processing)
124	STA	PD10 (Data processing)

2. Example of executing a logical processing instruction after the execution of a data processing instruction

Step number

123	LDA	K1 (Logical processing)
124	JC	K150 (Data processing)

8.7 Timer

- 1. Even when the program is at stop, the timer continues counting while the coil is on.
- 2. When the coil of timer is turned off, the timer indicates a temporary value which is a count value prior to turning off the coil. When the coil is turned on again, the timer resumes counting.

8.8 Temporary Value of Counter

The following example explains the relation between the number of input pulses and the temporary value of counter. In this example, pulses are input after a preset value of 100 is set to the counter.

	Temporary Value of Counter				
Number of Input Pulses	UP Counter	DOWN Counter			
0	100	100 100			
First pulse	100				
Second pulse	101	99			
Third pulse	Third pulse 102				
		n an			

After the set instruction of preset value to the counter is executed, the counter is actually preset by the first pulse input. Actually, therefore, the second and succeeding pulse inputs are effective as count values.

Counter coil set Preset value set Read of counter temporary value **MOV K100** Instruction SET PC2 LDA PC2 PC2 100 101 102 Counter temporary value Imput pulse First pulse input after setting of preset value سالك فقائبة ورثي صعرفات

8.9 Cautions for Programming When Counter (PC2 or PC3) Is Used

When the counter PC2 or PC3 is used, insert an LDA instruction (LDA PC2 for PC2, LDA PC3 for PC3) into a program which is always run per scan time.

8.10 Selection of Power Supply Unit

The relation between the power supply capacities of power supply units and the load currents of CPU, KD81(HP), and I/O units are as shown below:

83

ΜΕΜΟ

•••••
••••
 .
•••••
•••••
•••••
•••••
•••••
 ••••
 •••••
 ·
5

9. MAINTENANCE

9.	MAINTENANCE	 	• • • • • • •	• • • • • •	••••	••••	. 85 ~ 86
Ö 1	I Hendling Instructions		· ·		• .		86

and the second secon

a da angeste en el ser en en el ser en el ser en el ser en el ser el L'est el ser e L'est el ser e

85

and a second provide the second second second second provide the second second second second second second seco

9. MAINTENANCE

9. MAINTENANCE

9.1 Handling Instructions

(1) Since the case and connectors of this programmable controller are made of plastic, do no drop or give strong shock.

- (2) Do not remove the printed circuit boards from the case. Removal may cause board failure.
- (3) At the time of wiring, take care to prevent the entry of wire chips from the top into the unit. If such chips have entered, remove them.
- (4) Do not overtighten the fixing screws of unit.

9.2 Storage

When the programmable controller is stored as a single unit or mounted inside control panel or machine, never keep it at the locations and environments described below:

- (1) Locations where ambient temperature is outside the range of -10° C and 75° C.
- (2) Locations where ambient humidity is outside the range of 10 and 90%RH.
- (3) Locations where dew condensation takes place due to sudden temperature changes.
- (4) Locations exposed to the weather or the direct rays of the sun.
- (5) Locations where there are especially a lot of conductive powder such as dust and iron filings oil mist, and salt, and also where there exist corrosive gases.

IMPORTANT

- (1) Design the system so that the protection and safety circuits, which are furnished to protect the programmable controller from troubles, are located externally of the cabinet.
- (2) Since the printed circuit boards are mounted with electronic parts, which will be adversely affected by static electricity, handle them as described below when they are directly handled.
 - 1) Ground human body and work bench.
 - 2) Do not directly touch the conductive areas of printed circuit board and its electrical parts with a non-grounded material.

. . .

i ţ 1: 68) 1 . \mathbb{P}_{n+1} ς, . 1974 - 19

87

1

.

APPENDIX

APPENDIX PROCESS TIME LIST

Since average process times are shown in the table, actual process time may vary slightly.

(Unit: μs)

MELSEC-K

Device			PY						
Function	A	PX	PY0~11	PY12~15	PM	PD	PC	PI	ĸ
NOP	60			-	-			-	-
NOT	-	90	90	100	90		-		-
AND	-	90	90	100	90	_	-	-	-
OR	-	90	90	100	90	-		-	-
SET	-	80	80	100	80	-	60	60	-
RST		80	80	100	80	-	60	60	-
END	180			-	-	-	. —		-
LDA	-	80	80	100	80	90	180	190	80
STA	-	80	80	110	80	80	210	210	-
+		-			-	250	280	310	240
-	_		_	_		250	280	310	240
•	-	-	_	-	-	280	310	320	260
1	-	-	-	_	-	270	320	320	270
$\sqrt{-}$	500	-	-	-	-	_		-	-
%		-	-	· —	-	400	430	460	390
LOG	2150	-	-	-	-	-	-	-	-
ABS	180		-	-	-	-		-	
>	_	-	-	-	-	320	370	370	350
<	-	-	_	-		320	370	380	350
=	_		_	-	1	320	380	370	340
JC	-	-	- '	-	-	-		-	90
JMP	_	-		-	-	-	-	-	80
HS	-	-	-	-		410	420	430	360
LS	-	-	-	-	_	380	430	450	370
HLM	_	-	-	-	-	430	. –	-	370
LLM	-	_	-	-	-	380	-	-	350

APPENDIX

Function	Device Combination	Process Time (µs)	Function	Device Combination	Process Time (µs)
MOV	X → X	100	MOV	K → D	180
MOV	X→Y	100	MOV	K→C	240
MOV	X → M	100	MOV	K→T	240
MOV	Y→X	100			
MOV	Y→Y	110	Function	Device PD Is Used	Process Time (µs)
MOV	Y→M	100	SAL		580
MOV	M→X	100	HAL		580
MOV	M→Y	110	LAL		580
MOV	M → M	100	ΡΙΧ		1060
MOV	D → D	190	ΡΙΥ		1400
MOV	D → C	260	PID	К1	3990
MOV	D → T	260	PID	K2	3960
MOV	C→D	300	PID	КЗ	4720
MOV	C → C	370	PID	К4	4770
MOV	C→T	350	PID	К5	4410
MOV	T→D	270	PID	К6	4310
MOV	T→C	320	PID	К7	5430
MOV	T→T	310	PID	К8	5410

MELSEG-K

		· · · · · · · · · · · · · · · · · · ·	
MEMO			
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
		14 	
	1 (71) 1400	e a la companya de la	
1999 - 19	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		
· · · · · · · · · · · · · · · · · · ·			
	<u> </u>	00	

- ----

